Tango Integration of Modern 2D Detectors

Yuelong Yu FS-EC DESY

Outline

- > Background
- > New hybrid pixel detectors
- > Lambda tango integration
 - System layout
 - Detector PC
 - Software
 - Tango servers
 - Data
- > Summary and Outlook

Background

- > Motivation
 - Provide detector with high sensitivity, high resolution, high frame rate and large area
- New detector development
 - 2D detector with small pixel size
 - > High resolution and large area
 - Hybrid pixel technology
 - > Pixelated sensor and Chip are directly connected
 - > Fast read-out speed (kHz)
 - Direct photon conversion
 - > Provide high Quantum Efficiency
 - Adaptable sensor material (e.g. Si, GaAs, CdTe)
 - Covers different range of X-ray energies

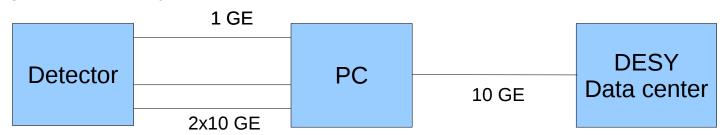
New Hybrid pixel detectors

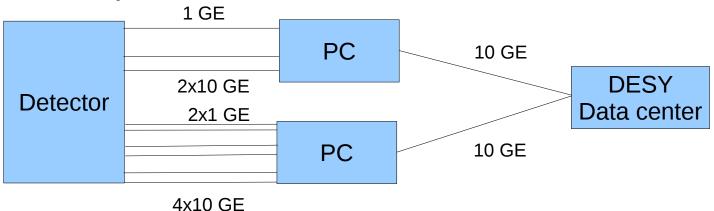
> Lambda

- Based on the Medipix3 readout chip
- Single Module:1536 x 512 pixels
- Support both 12 and 24 bit image modes
- Maximum frame rate:2000 frames/second with 12 bit mode
- Maximum data rate for single module : ~2.6 GB/s
- Multi-module system (Lambda2M) available
 - Lambda2M contains 3 lambda single module

> AGIPD 1M

- Multi-module system (16 AGIPD single modules)
- AGIPD 1M system is designed for European XFEL
- Maximum data rate: 10GB/s





Lambda tango integration – System layout

> Single module system

> Lambda2M system

Lambda tango integration – Detector PC

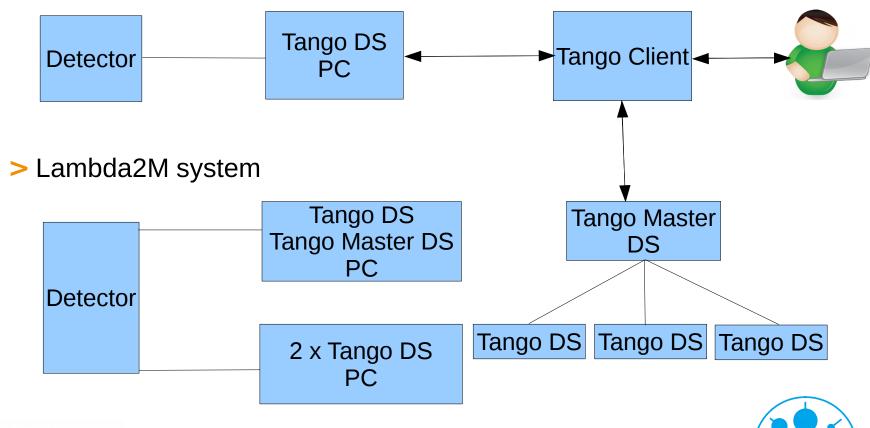
- > Detector PC
 - Dedicated detector PC is used for detector control and data acquisition
 - Dell PowerEdge R620 Server or similar standard
 - Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz X 12 cores
 - RAM: 256 GBytes
 - Hard disk: 4 TBytes
 - 6 X 10 GE NICs
 - 2 X 1 GE NICs

Lambda tango integration – Software

> Detector SDK

- Encapsulate the control and data acquisition in the SDK
- API for further control system integration or user applications

> Tango integration


- Based on the detector SDK, a tango device server (DS) is implemented
- DS is used to set parameters and control the behaviors of the detector
- The device is integrated into the experiment control environment
- For multiple module system, the master tango device server is used to control the slave tango device server

Lambda tango integration – Tango servers

> Single module system

Lambda tango integration – Data

> Data compression

- CPU based parallel data compression is implemented in the detector SDK
- Hardware Gzip accelerator (IBM and Comtech EF Data) is under study.

> Data format

- Nexus file format is used for saving the meta data and image data
- File split option is implemented and each file has a user specified size

> GPFS with NFS

- The GPFS is exported to detector PC using NFS.
- Detector writes data into mounted directory

> HiDRA

- An application based on ZMQ used to copy data from detector PC to data center
- Tested with Pilatus and AGIPD 1M system

Summary and Outlook

- Lambda system has been successfully integrated into tango control system at PETRA3 in DESY
- > Both single and multi module system work reliably with full speed (2000 fps) data acquisition
- > CPU based parallel compression is implemented for the image data
- > Hardware compression accelerator will be used in future
- HiDRA will be used to copy data from detector PC and data center for Lambda system
- ZMQ stream of the image data will be provided by detector SDK in future

Thank you

