HDB++ Meeting 09/2019

ALBA Infrastructure

Archiving infrastructure: Accelerators and Beamlines

- Beamlines use TDB/HDB in virtual machines
- Accelerators store 11000 attributes in HDB++:
 - Attributes distributed in 6 MyIsam databases based on subsystem
 - rf, vc, di, acc, ct, pc, sizes between 40G-60G per month
 - Writing database contains only last 6 monthly partitions, older data is available in another server (that can be decimated).
 - 11000 attributes stored also in legacy TDB extended to 6 months.
 - 4000 attributes still to be migrated from TDB to HDB++
 - We implement both periodic and event-based archiver for HDB++
 - Backup by mysqldump restricted by table and date.

Archiving Tasks for 2019

Archiving (Accelerators)

Archiving infrastructure

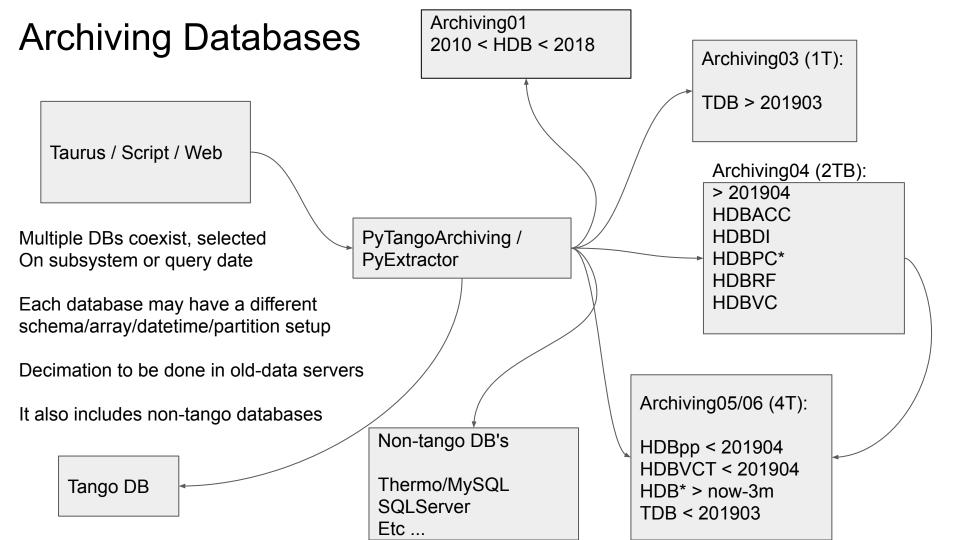
80%

All databases partitioned by subsystems to improve maintainability Speed of searches increased by a factor of 10 (in last 3 months data) without reducing resolution (down to 10 Hz) Maintenance scripts for backup/restore ready, **automation pending** Two new servers for long storage archiving (archiving05/archiving06)

Archiving client api / usability

API refactored to provide access to multiple databases from multiple hosts API integrated in new Taurus version using tangoarchiving schema

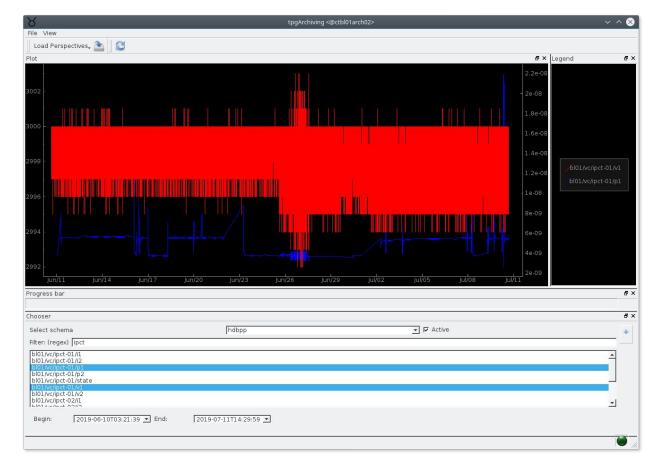
Archiving plotting / usability


25%

80%

- PyQtgraph-based plotting infrastructure
 - Support tango archiving by integrating taurus_tangoarchiving

Contributions to phase II/III beamlines


New Archiving/Plotting tools to be deployed in all new beamlines

New Plotting Tool: PyQtGraph

Under test on

BL01/Miras

Archiving Status	Problems	Solutions adopted
 Jan 2017: HDB/TDB was the old Tango archiving system, running at Alba since 2007, storing 15000 attributes. Resolution limited to 1Hz for last week; 0.1Hz for last 3 years. 	 Values at 3 Hz were requested, to be kept for 3 months. HDB/TDB was obsolete and hard to maintain (~180 hours to recover after crash). 	 The new HDB++ archiving developed by ESRF allowed acquisition at 10Hz. Deployed at Miras/Accelerators using MariaDB servers since january 2017.
 Summer 2017: The new HDB++ required an event-based control system. It needed to modify configuration of service area servers. Storing at 3Hz increased the amount of data available. 	 The increase of data traffic overloaded some CPU's, that we needed to optimize. In paral.lel, the amount of data to manage for both servers and client became unmanageable. 	 Beginning 2018, we started collaboration with the ESRF to solve these problems. Modified HDB++ to reduce the CPU load. Modified the database schema to reduce the data usage and add monthly partitioning.
 Spring 2018: Due to CPU load issues, our plan was to not shutdown HDB/TDB, but to introduce HDB++ progressively. 	 HDB disks failed before summer 2018, and we had to modify TDB to keep 1 year of data during the migration. Clients (Mambo) unable to show old data. 	 Summer 2018 we accelerated the migration to HDB++. Modified archiving tools to correlate data from old and new databases.
 Winter 2018: HDB++ timestamp had milliseconds resolution, which provides more useful information but extra load for indexing on client/server sides. Big database indexes were too slow to backup and restore. 	 The amount of memory and disk used by servers and clients grow exponentially. Tools developed for HDB++ maintenance were not fitted to the amount of data stored (same problems for ESRF lead to full redesign of system HW). 	 Winter 2018, added decimation on data and plotting to reduce clients load. Easter 2019, reduced server load and maintenance splitting databases by subsystem (size reduced by a factor of 10).
 Summer 2019: HDB++ system currently running and stable in service area. We store 10400 attributes, inserting 1500 values/second on average. This is as much data as ESRF+MaxIV+Solaris+Elettra together 	 We are using 2TB disk/year; which is not a daily issue but a long-term problem for backup, restore and data availabilty. The amount of data to be retrieved by query (2e6 points/week) is still too big for our current plotting tools (loading is slow, but still 3X times faster than using ESRF tools). 	 Databases modified to reduce indexes, speeding up extraction backup and restore (~8 hours). Re-introduced periodic mode for slow values. Two new servers for long-term storage. New plotting tool (PyQtGraph) to be deployed in control room during summer 2019.