
h
ttp

://w
w

w
.tan

go
-co

n
tro

ls.o
rg

/

18/09/2019 Stuart James, Sept 2019 HDB++ Workshop 1

Timescale Deployment &
Implementation

EUROPEAN SYNCHROTRON RADIATION FACILITY

h
ttp

://w
w

w
.tan

go
-co

n
tro

ls.o
rg

/

Initial Deployment (First Phase)

• Initial deployment – drop in replacement for Cassandra
with no expanded capabilities.
– Keep changes small and localized if possible

• We do not want to loose robustness of Cassandra
– Fault tolerance an important factor

• Leverage performance of Timescale for
insertion/queries.

• Address additional maintenance issues arising due to
adoption of Timescale:
– Index requires clustering to be viable
– Timescale chunk interval times must be balanced against

chunk size on disk.

18/09/2019 2Stuart James, Sept 2019 HDB++ Workshop

Development Work (Shared Library)
• Initially based on libhdbpp-postgres
• Opted to rewrite library:

– Allowed code base to be unit tested.
– Use of modern C++
– New internal architecture

• Internally split into two layers:
– Transaction layer – prepares data/request

for storage.
– Transaction layer is generic and can be

shared with other backends, or even
merged into libhdbpp.

– Db Access Layer – handles actual calls to the
database.

– Db Access layer can be quickly swapped out
to try prototype new storage methods.

• Additional dependency: libpqxx
– Why? High level library and offers potential

future performance features.
– Modern C++.
– Currently statically linked into libhdbpp-

timescale.

18/09/2019 Stuart James, Sept 2019 HDB++ Workshop 3

Issues Encountered
• PostgreSQL does not support

unsigned types.
• pgunit not compatible with latest

PostgreSQL release. No Java
support.

• Currently using numeric via
CREATE TYPE – but possible
problem in Java extraction.

• We must escape arrays of strings
for storage. On extraction these
are not unescaped.
• Under investigation

Development Work (Schema)

18/09/2019 Stuart James, Sept 2019 HDB++ Workshop 4

CREATE TABLE IF NOT EXISTS att_conf (

att_conf_id serial NOT NULL,

att_name text NOT NULL,

att_conf_type_id smallint NOT NULL,

att_conf_format_id smallint NOT NULL,

att_conf_write_id smallint NOT NULL,

table_name text NOT NULL,

cs_name text NOT NULL DEFAULT '',

domain text NOT NULL DEFAULT '',

family text NOT NULL DEFAULT '',

member text NOT NULL DEFAULT '',

name text NOT NULL DEFAULT '',

ttl int,

hide boolean DEFAULT false,

PRIMARY KEY (att_conf_id),

FOREIGN KEY (att_conf_type_id) REFERENCES att_conf_

FOREIGN KEY (att_conf_format_id) REFERENCES att_con

FOREIGN KEY (att_conf_write_id) REFERENCES att_conf_

UNIQUE (att_name)

);

CREATE TABLE IF NOT EXISTS att_scalar_devboolean (

att_conf_id integer NOT NULL,

data_time timestamp WITH TIME ZONE NOT NULL,

value_r boolean,

value_w boolean,

quality smallint,

att_error_desc_id integer,

details json,

PRIMARY KEY (att_conf_id, data_time),

FOREIGN KEY (att_conf_id) REFERENCES att_conf (att_conf_

FOREIGN KEY (att_error_desc_id) REFERENCES att_error_des

);

• Normalised the schema, added
foreign keys.

• Consolidated scalar/array ro/rw tables
into single table.
– Allows ro/rw/wo type attributes to be

stored in the same table.
– Leverage Timescales ability to

partition the data based on time.

• Data tables include a json field for
future expansion. Example:
– Insert time

• att_conf updated:
– Include attribute type data and a

reference to the data table. This may
provide a method to handle attribute
data type changes in future.

– Additional field to hide inactive
entries. For future use.

Development Work (Services)
Hdb Db Services Process (In
Progress):
• Addresses the issue of index clustering: Reorder

chunks in the data tables using Timescale
lightweight commands. Allows creating an
effcient rolling window of reordered chunks.

• Observe chunk intervals against chunk sizes
using Timescale extension commands. Warn
when we may need to alter chunk intervals.

• Run under systemd as part of the core database
cluster stack on hdb-services.

Hdb Health Check Device Server
(Design/Requirements):
• Central reporting mechanism, feeding health

status into Tango Control system and archiving
health events.

• Will draw metrics from Hdb Db Service, Patroni,
hosts servers and more.

18/09/2019 Stuart James, Sept 2019 HDB++ Workshop 5

Cluster Design
• Based on recommendation by Timescale (see link)

• Also see Cluster Design document.

Notes
• Single point of access via proxy.

• Our design utilities a Master and one or more Replica
nodes.

• All writes to Master via proxy.

• All reads to Replica’s via proxy.

• Reduces load on Master when users query for data.

• On Master failure, one Replica is promoted to Master.

• Proxy is dynamically updated via Confd (see
ClusterDesign document) on promotion.

• Each database node is deployed with an instance of
Patroni.

• Patroni manages PostgreSQL process itself.

• Replication is also handled via Patroni automatically

• New failure points, etcd, HAProxy and Patroni managed
by systemd to partially mitigate problems.

18/09/2019 Stuart James, Sept 2019 HDB++ Workshop 6

https://blog.timescale.com/blog/high-availability-timescaledb-postgresql-patroni-a4572264a831/

Deployment

• Deployment is on virtual/real servers to
allow us to utilise high end ex Cassandra
servers for database nodes.

• Each database is deployed on its down
server with its Patroni process. Allows the
node to be down without taking out
other critical software.

• Opted for a single instance of etcd
initially, with option to cluster at a later
point. (recommended)

• Deployment was split logically as follows:
– hdb-archivers aggregates the Tango Device

Servers into one or more virtual servers.
– hdb-services aggregates all the service

software onto a single server. Can be scaled
if required.

• We can not scale write performance, but
read performance can be scaled with
additional Replica nodes.

18/09/2019 Stuart James, Sept 2019 HDB++ Workshop 7

Hdbpp Timescale Project

• Proposal to centralize all components for the
Hdb++ Timescale project into a single
repository.
– Additionally move libhdbpp-timescale shared

library component into the project.
– To do this, requires rebuild of component build

systems

• As project increases in complexity, then
managing a coherent release gets harder.

• Timescale project will add at least 2 more
components (hdb-db-services and hdb-health-
check).

• All components put under a single integrated
build system, to build entire release.
Advantages
– New user friendly
– Maintain any version dependencies
– Potentially allow easier packaging

• Easy to copy project structure and build files
for other database back-ends.

• Shared components would either become git
submodules or downloaded at build time (see
HdbppMetrics for an example).

Component Rework:
• New CMake build system for

hdbpp-es, hdbpp-cm, improved
build for libhdbpp.

• Refactored libhdbpp (Breaking
changes and imply a 2.0.0 library
release)

• Standardized install location for
headers as include/hdb++

18/09/2019 Stuart James, Sept 2019 HDB++ Workshop 8

https://github.com/tango-controls-hdbpp/libhdbpp/tree/exp-refactor

Other Hdbpp Development +
Deployment

Development
• Performance Tuning. libhdbpp-

timescale is not optimised,
instead the initial version is
built for stability + correctness.
– libhdbpp-timescale – micro-

benchmarking library
integrated. Some initial tests
complete, more to do.

– HdbppMetrics project – stub
for future metrics work.
Instruments Event Subscriber.
Possible metrics:
• Back end comparison.
• Event time break down.
• More?

Deployment

• Backup solution.

• Additional cluster
monitoring tools.

18/09/2019 Stuart James, Sept 2019 HDB++ Workshop 9

https://github.com/tango-controls-hdbpp/HdbppMetrics

Multi Db Support (Second Phase)

• What to do with legacy Cassandra data?
– We would like to make this available via a

legacy database.

• How much data can be stored in a single
database?
– We may need to offload data in the live

database to a legacy database after a set
period of time.

• Do we want decimate data in long term
storage?
– Or throw some data away?

• How do we access these additional
databases?
– Hdbpp viewer applications need to be aware

of the additional databases.

• Potential solutions being evaluated:
– Custom common extraction API able to query

all databases.
– GraphQL based solution.
– Charting solutions with built in PostgreSQL

support.

18/09/2019 Stuart James, Sept 2019 HDB++ Workshop 10

• Looking at requirements of the second
phase now.

• Once we have outline requirements, a
short study if the available solutions
can be completed and shared with the
community.

h
ttp

://w
w

w
.tan

go
-co

n
tro

ls.o
rg

/

Thank you!

Any questions?

Proxy PgAdmin4

18/09/2019 Stuart James, Sept 2019 HDB++ Workshop 11

http://hdb-services:7000/
http://hdb-services:8080/

