
Testing HDB++

A brainstorming on 
benchmarking, 

evaluating, accepting



Purpose of testing

Why do we need to test the system?

● Validate the code, its consistency, and that it does what should be done.

● Measure performance. Performance of the existing code and each 

supposed "improvement" on the system, to avoid regression.

● To provide a guide on how to tune the system for optimal performance.

● To give users practical information on "what to expect".



Things to test in an archiving system

● Max. number of values to inserted per attribute/second/archiver.

○ Statistics already provided by the current tools

● Compatibility with tango types (64bit, unsigned, encoded, arrays)

● Optimal attribute/archiver ratio depending on the above.

● Feasibility of backup/restore during operation.

● Usability and client satisfaction, query time and latency.

● Analysis of the errors recorded, and study how to reduce them.



Testing compatibility

● Targets of benchmarking  are not only to provide an specs number of 

the max. performance that can be achieved.

● Benchmarking should provide a complete guide on how to tune the 

system for each of the different usages.

● E.g. optimal attribute/archiver ratio may depend not only on the 

number of attributes/events but on their type (arrays, strings).



Testing infrastructure
An initial question to be solved is: Testing with simulators or testing the archiving 
system on real systems?

By experience, it seems that only testing on real systems provides us enough 
information regarding final user experience. 

Testing "offline" systems based on simulators may "mask" some flaws that affect the 
final performing.

HDB++ allows to run several databases in paral.lel. So we can store same attributes 
using two different strategies and evaluate performance separately.

But, testing/benchmarking all types can be achieved only  through simulators. So 
both types of testing are needed.



Testing infrastructure
One  of the best advantages of HDB++ is the huge amount of metrics that we are 
adding since the beginning. So we can evaluate many different options:

● Distributing attributes per subscriber randomly or per event load:
○ It will produce an heterogeneous distribution of attributes/types per subscriber.

○ It should be the most load-balanced distribution.

● Distributing event subscribers per attribute type:
○  it will lead to all attributes of the same archiver to be written to the same table. 

○ It will give us the optimal rate of insertion per type, or at least is a way to easily measure it.

○ But, Is it optimal or the opposite? Is it dangerous to not distribute the load on a table on 

different processes?

● Distributing event subscribers per device:
○ It will gave us metrics to study the performance of our control system

○ Probably, it is the least useful from a benchmarking point of view, but the most useful from 

the control engineer point of view.



Testing on the client side

The client side should be tested in two different ways:

● On script-mode: 
○ Testing the api/extractor tool to verify the time needed per query, depending on type, dates, and 

number of values to be expected.

○ Depending on this results, we may need an API that "tunes" the query according to the recorded 

statistics in order to optimize query time.

○ Measuring the latency of the data (the gap between current data availability and the last stored 

value). User must be aware of this gap to query the data according to it.



Testing on the client side
The client side should be tested in two different ways:

● On GUI: 
○ The graphical back-end will limit the amount of data that can be plot.

○ Javascript/Web, Java, Qt  (qwt, pyqtgraph); each backend has its own limitations, both in terms 

of memory and in the amount of cpu used by the graphical plot when displaying big numbers of 

items (e.g., Qwt practically limited to 65K points on display despite of the hardware used).

○ The  user workflow and the resultant queries. If we decimate the data to be shown (to reduce the 

number of points) ... what to do when zooming? New queries to database or decimation on client? 

○ At ALBA we are requested to mix live data and stored data. Does this requirement applies to the 

other institutes?

○ How the workflow affects our query times? Do we have access to statistics so we can tune the 

querys? (e.g. executing decimation on the server side prior to sending the data to the client).



Testing on the client side

Brainstorming : 

● How to evaluate queries performance?

● How to get rid of caches effect?

● How to compare attributes with completely different event density?

○ Taking into account that many attributes go to the same tables, so an event-intensive attributes 

affects the queries to all the rest of attributes in the same database.

User lives matter? Should we involve them globally on the evaluation?



Backup / Restore

Feasibility of online backup / restore is not typical taken into account when testing.

Or, typically it involves using replication to not affect insertion of data into the 

database.

But, how backup on the replicated server affects the queries from users? 

Do we care? 



Testing on the client side
Shall we recover the Extractor tool/device concept?

● Would allow to optimize the queries from any graphical back-end, or even 

any database back-end if using library as plugin. And we will have a 

common performance measure for everyone.

● Should implement caches or will be just another memleak to take care of?

● Would be capable of managing returning arrays with time-value for any 

type? (e.g., using pipes or encoded as returning type)

● Are all client api's (e.g. Javascript) capable of integrating asynchronous 

commands and events?



Brainstorming

What do we do now?


