Experiment Control Upgrades at DESY

Teresa Núñez DESY Photon Science

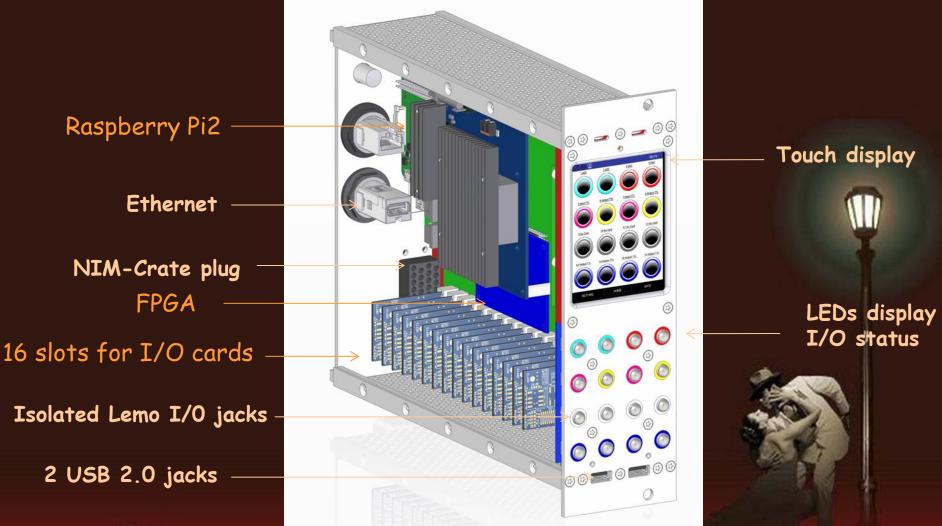
- PiLC Logic Controller
- ADQ412 Digitizer
- Diffractometer in Sardana
- GPFS storage system

Tango Meeting ONERA, 21-06-16

PiLC Logic Controller

Multifunctional and customizable module for fast signal processing

- Data processing power, speed, synchronity -> FPGA
- Configurable input/outputs -> NIM/TTL I/O, ADC and DAC cards
- High-level user-friendly interface -> Raspberry Pi 2

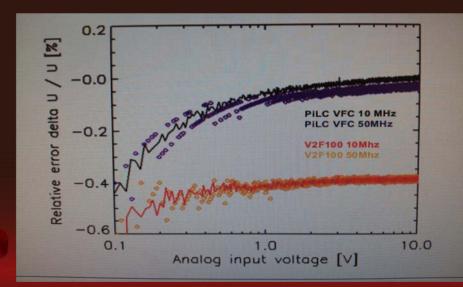

Scope of applications only limited by the FPGA functionality

Developed at DESY (FS-EC group)

PiLC Logic Controller (ctd.)

PiLC - Software

Configured and controlled via Tango Servers



PiLC - Applications

Dedicated Tango Server for each application

- Delay Generator for Pump-Probe experiments
- Detector counts collection based on input signal depending on magnet state for XMCD measurements
- VFC: frequency generator linearly dependent on an analog input

PiLC - Applications (ctd.)

• Trigger Generator:

Continuous scans triggered by PiLC

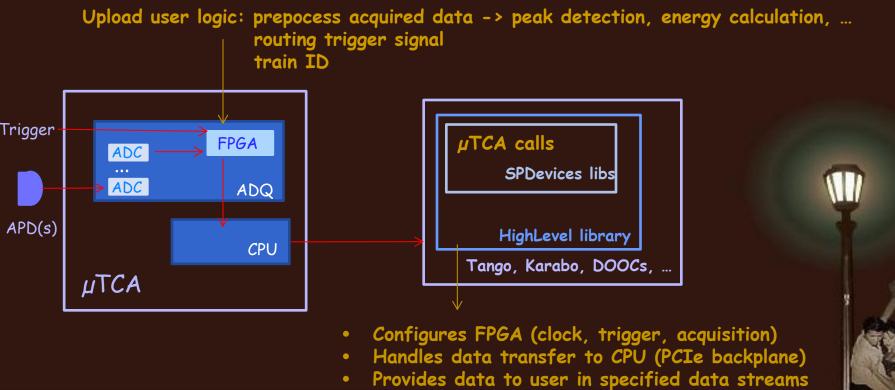
- Six trigger modes: based on time and/or position (start and frequency, position 'zig-zag' selectable) or external signal.
- Up to five encoder and one counter values (extensible) stored in circular buffer (32 MB depth) during scans
- Selectable encoder triggering
- Data (encoders/counter readings) accessible during scan
- Maximum trigger rate depends on stored data and requested number of triggers (limited by buffer full): up to 11.2 kHz in worst scenario

Integrated in Sardana via Macros and TriggerGenerator controller (under test)

ADQ412 Digitizer

Portable high performance digitizer with customizable FPGA and $\mu {\rm TCA}$ interface

- Analog inputs -> sampled with high resolution, capture rate and bandwidth
- FPGA -> offering resources for customized applications
- μ TCA interface and easy-to-use API


Ideal for broadband applications and high speed data recording

High Speed Digitizer from SP Devices

ADQ412 Digitizer - Software

Integrated into Tango , DOOCS and Karabo via a High Level library

• Allows more than one ADQ per μ TCA

HighLevel library: developed at XFEL (A.Beckmann)

ADQ412 Digitizer - Applications

Analog signals sampling with up to 7GSample/s

- Fully time resolved nuclear resonant scattering (P01):
 - Peak detection, deconvolution and fitting implemented in FPGA
 - Dedicated Tango Server for configuring FPGA and getting/storing processed data

Overcome limitations of conventional systems (no information on pulse height, only one single event timed per excitation) in burst and average rates

Diffractometer in Sardana

Implementation accepted and available in Sardana develop branch and releases > 2.0.0

- Diffractometer controller
- Dedicated macros
- Dedicated Taurus GUIs

Documentation in Sardana SEP4

Horrlich willkommon!

GPFS storage system

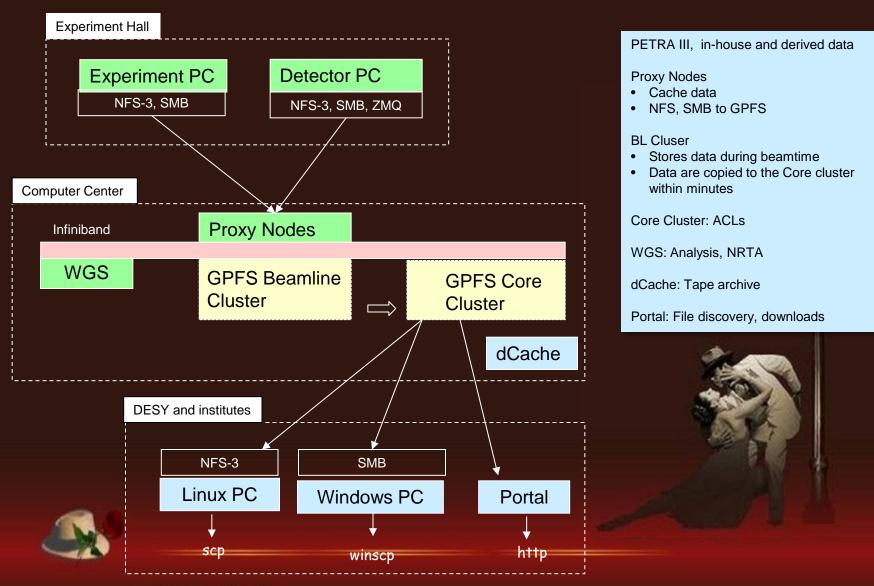
Handle massive data production at the experiments

- Cope with data rates
- Accept data from 'everywhere'
- Implement authorization
- Provide long term storage
- Support data processing

Common initiative of DESY-CC and IBM (Speed)

GPFS storage system (ctd.)

Two gpfs servers installed at Computer Center:


- Beamline FS: optimized for ingestion of data at high speed bursts
- Core FS: optimized for capacity and concurrent parallel access

Several protocols for data transfer to storage system:

- ZMQ:
 - ✓ high throughput
 - ✓ decouples operating systems
 - ✓ reduces disk I/O
 - ✓ not necessarily site-specific
- NFS-3, SMB

GPFS storage servers (ctd.)

Herrlich willkomment