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… Introductions ...
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About me
● Instrument control group at JCNS/MLZ
● Writing Tango servers

– Tango devices with generic interfaces using a
Python framework called Entangle

● Python core developer
● Original author of Sphinx
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About Sphinx

● sphinx-doc.org
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So, what does it really do?
● Processes markup to output formats

– reStructuredText
– (Markdown)

to
– HTML, ePub
– LaTeX (  PDF)→

– Manpages, Texinfo, HTML Help, QtHelp, ...
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So, what does it really do?

● Lots of built-in semantic markup and 
features suited for software documentation

● Even more built-in features suited for Python 
software documentation

● Extensible!
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(Short) history

● “Ye olde” Python docs
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(Short) history

– LaTeX source format
– latex2html + custom hacks conversion

● Problem 1: contributions
● Problem 2: LaTeX hacking required

● Obvious solution: write something in Python
● tailored to the core Python docs

● “Ye olde” Python docs – pre-2007



23/06/2016 12/3330th Tango Collaboration Meeting

(Short) history

– LaTeX source format
– latex2html + custom hacks conversion

● Problem 1: contributions
● Problem 2: LaTeX hacking required

● Obvious solution: write something in Python
● tailored to the core Python docs – at first!

● “Ye olde” Python docs – pre-2007
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Status today
● Stable release series 1.4.x
● Available on GitHub (recent move from hg/BitBucket)
● Team of about 5 active developers
● De-facto standard for Python projects

– Also adopted by a few other languages, like Julia
● Automated deployment and hosting with 

ReadTheDocs.org
● Used for in-house docs in companies
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… Features ...
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Basics
● Project: directory with conf.py
● Many files, one logical hierarchy  cross-referencing→

● Still, file structure is output structure (for HTML based backends)
● reStructuredText markup, similar to Markdown but standardized, with 

defined extensibility – provided by Docutils
● Source code highlighting
● Extensive indices
● Builtin offline search (JS based)
● To build: “make html” etc (only thin wrapper around sphinx-build)
● Parallel build available
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Configuration
● conf.py is a Python module
● Config settings are globals in that module after execution
● Can do complex tasks to determine e.g. version number
● Deployment specific behavior, with “tags”

sphinx-build -t short
● Extensions can introduce their own configuration values
● “Quickstart” tool generates config with most common 

configuration values and comments
● conf.py is also a Sphinx extension!
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Quickstart
Welcome to the Sphinx 1.4.4 quickstart utility.

Please enter values for the following settings (just press Enter to
accept a default value, if one is given in brackets).

Enter the root path for documentation.
> Root path for the documentation [.]:

You have two options for placing the build directory for Sphinx output.
Either, you use a directory "_build" within the root path, or you separate
"source" and "build" directories within the root path.
> Separate source and build directories (y/n) [n]: 

Inside the root directory, two more directories will be created; "_templates"
for custom HTML templates and "_static" for custom stylesheets and other 
static
files. You can enter another prefix (such as ".") to replace the underscore.
> Name prefix for templates and static dir [_]: 

The project name will occur in several places in the built documentation.
> Project name:
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Configuration
# Sphinx documentation build configuration file

import re
import sphinx

extensions = ['sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.todo',
              'sphinx.ext.autosummary', 'sphinx.ext.extlinks',
              'sphinx.ext.viewcode']

master_doc = 'contents'
templates_path = ['_templates']

project = 'Sphinx'
copyright = '2007-2016, Georg Brandl and the Sphinx team'
version = sphinx.__released__
release = version
show_authors = True
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Markup
Heading
=======

.. index:: reStructuredText

This is a *sample* paragraph to show **reStructuredText**.
It has `links <http://sphinx-doc.org>`_ and references [1]_.
Some :ref:`internal links <internal>` too.

.. note:: This only shows a small fraction of possible markup.

.. class:: DeviceProxy

   .. method:: exec_cmd(name: str, inarg: any) -> any

      :param name: The command name.

      See also :meth:`read_attr`.

      .. versionadded:: 5.0
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Domains
● Language-specific markup is grouped into a “domain”
● Supports typical API items for different languages, including indices 

and doc fields (Javadoc-like @param foo)
● Markup items prefixed, e.g.

.. py:class:: Database

.. cpp:method:: exec_command

● Default domain can be selected per-project/per-file
● Built-in: Python, C, C++, JS, reST
● Further domains can be added by extensions
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Theming
● HTML output is themable, including templates
● Integration into existing layouts possible
● External themes based on layout frameworks, e.g. twitter bootstrap
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Where's the source code?
● Origins: Python docs were (still are) separate from docstrings
● Focus on hand-written, high-quality prose with semantic markup 

and cross-refs
● But most tools provide “automatic” API documentation
● Synthesis: autodoc

– Structure still given by doc files
– Pull in docstrings where sensible
– Allows writing high quality docstrings and glue,

without being tied to source code structure
– Keep large examples out of source code
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Autodoc
● Imports the Python code

● Granularity is variable

The database module
===================

.. automodule:: tango.database
   :members:

The database module
===================

.. module:: tango.database

In this module, the following 
functions are provided:

.. autofunction:: add_device

.. autofunction:: add_server

   Example: ...
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… Extensions ...
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Intersphinx
● Each project saves an “inventory” of its API items together with 

HTML output
● Intersphinx loads that and can generate deep cross-refs to 

those API items
● For example, projects can link to the main Python 

documentation
● Inventories can be local or remote (downloaded at build time)

● Connect different doc projects that are maintained individually
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More standard extensions
● Internationalization: processes translatable text into gettext .po files and 

allows translation with standard tools, e.g. web-based systems like Transifex

● Support for LaTeX style math (with PNG, MathJax output)
● Support for diagrams/graphs with Graphviz

– also automatic inheritance diagrams
● Doctest-ing Python examples
● Showing source code for API items, either formatted with output or just 

links on repository browser (GitHub or others)
● Link checking
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Writing extensions
● Extensions have different ways to hook into the build process:

– add new output formats
– add new markup items (directives and roles)

         .. device::    :dev:`reference`
– add configuration values to be recognized in conf.py
– add domain or domain-specific markup
– react to events (like “document parsed”, “cross-reference missing”)
– add format specific things (like JavaScripts for HTML)

● Requires (some) docutils expertise, but tutorial and
plenty of examples available
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Writing extensions
class Todo(Directive):
    has_content = True
    required_arguments = 0
    optional_arguments = 0
    final_argument_whitespace = False

def setup(app):
    app.add_config_value('todo_include_todos', False, 'html')
    app.add_config_value('todo_link_only', False, 'html')

    app.add_node(todo_node,
                 html=(visit_todo_node, depart_todo_node),
                 latex=(visit_todo_node, depart_todo_node))
    app.add_directive('todo', Todo)

    app.connect('doctree-read', process_todos)
    ...
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Phytron motor controllers
-------------------------

These devices support the `Phytron`_ Motor controller:

 * `MCC-1`_
 * `MCC-2`_
 * `OMC/TMC`_

.. autodev:: phytron.Motor

.. autodev:: phytron.Sensor

.. _Phytron: http://www.phytron.de

.. _MCC-2: http://www.phytron.eu/antrieb/index.php?Set_ID=165&PID=9

.. _MCC-1: http://www.phytron.eu/antrieb/index.php?Set_ID=165&PID=39

.. _OMC/TMC: http://www.phytron.eu/antrieb/index.php?Set_ID=165&PID=10

Example
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Example
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Read the Docs
● rtfd.org
● Automated platform that builds and hosts a project
● Not much configuration necessary for normal setups
● Multiple branches/versions available to build, selectable 

when viewing
● Supports i18n
● Supports downloadable documents (PDF, ePub)
● Might be problematic with C/C++ dependencies (PyTango)
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Integration for other languages
● C++ – domain is builtin, autodoc-like functionality supported 

via Doxygen bridge (breathe)
● Uses Doxygen to parse C++, extract doc comments

– Directives like .. autodoxygenfile::
– Can embed reStructuredText into Doxygen markup

● Java – Javasphinx provides a domain and automatic API docs

● Third-party projects – might need tweaking or additions
● I'm happy to collaborate – just ask!
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… Questions?

Addresses of interest:

● http://sphinx-doc.org
● http://github.com/sphinx-doc/sphinx
● sphinx-users@googlegroups.com

● g.brandl@fz-juelich.de
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