
23/06/2016 1/3330th Tango Collaboration Meeting

Sphinx – a tool for
unified documentation

Georg Brandl

23/06/2016 2/3330th Tango Collaboration Meeting

… Introductions ...

23/06/2016 3/3330th Tango Collaboration Meeting

About me
● Instrument control group at JCNS/MLZ
● Writing Tango servers

– Tango devices with generic interfaces using a
Python framework called Entangle

● Python core developer
● Original author of Sphinx

23/06/2016 4/3330th Tango Collaboration Meeting

About Sphinx

● sphinx-doc.org

23/06/2016 5/3330th Tango Collaboration Meeting

About Sphinx

● sphinx-doc.org

?

23/06/2016 6/3330th Tango Collaboration Meeting

About Sphinx

● sphinx-doc.org

?

23/06/2016 7/3330th Tango Collaboration Meeting

About Sphinx

● sphinx-doc.org

?

23/06/2016 8/3330th Tango Collaboration Meeting

So, what does it really do?
● Processes markup to output formats

– reStructuredText
– (Markdown)

to
– HTML, ePub
– LaTeX (PDF)→

– Manpages, Texinfo, HTML Help, QtHelp, ...

23/06/2016 9/3330th Tango Collaboration Meeting

So, what does it really do?

● Lots of built-in semantic markup and
features suited for software documentation

● Even more built-in features suited for Python
software documentation

● Extensible!

23/06/2016 10/3330th Tango Collaboration Meeting

(Short) history

● “Ye olde” Python docs

23/06/2016 11/3330th Tango Collaboration Meeting

(Short) history

– LaTeX source format
– latex2html + custom hacks conversion

● Problem 1: contributions
● Problem 2: LaTeX hacking required

● Obvious solution: write something in Python
● tailored to the core Python docs

● “Ye olde” Python docs – pre-2007

23/06/2016 12/3330th Tango Collaboration Meeting

(Short) history

– LaTeX source format
– latex2html + custom hacks conversion

● Problem 1: contributions
● Problem 2: LaTeX hacking required

● Obvious solution: write something in Python
● tailored to the core Python docs – at first!

● “Ye olde” Python docs – pre-2007

23/06/2016 13/3330th Tango Collaboration Meeting

Status today
● Stable release series 1.4.x
● Available on GitHub (recent move from hg/BitBucket)
● Team of about 5 active developers
● De-facto standard for Python projects

– Also adopted by a few other languages, like Julia
● Automated deployment and hosting with

ReadTheDocs.org
● Used for in-house docs in companies

23/06/2016 14/3330th Tango Collaboration Meeting

… Features ...

23/06/2016 15/3330th Tango Collaboration Meeting

Basics
● Project: directory with conf.py
● Many files, one logical hierarchy cross-referencing→

● Still, file structure is output structure (for HTML based backends)
● reStructuredText markup, similar to Markdown but standardized, with

defined extensibility – provided by Docutils
● Source code highlighting
● Extensive indices
● Builtin offline search (JS based)
● To build: “make html” etc (only thin wrapper around sphinx-build)
● Parallel build available

23/06/2016 16/3330th Tango Collaboration Meeting

Configuration
● conf.py is a Python module
● Config settings are globals in that module after execution
● Can do complex tasks to determine e.g. version number
● Deployment specific behavior, with “tags”

sphinx-build -t short
● Extensions can introduce their own configuration values
● “Quickstart” tool generates config with most common

configuration values and comments
● conf.py is also a Sphinx extension!

23/06/2016 17/3330th Tango Collaboration Meeting

Quickstart
Welcome to the Sphinx 1.4.4 quickstart utility.

Please enter values for the following settings (just press Enter to
accept a default value, if one is given in brackets).

Enter the root path for documentation.
> Root path for the documentation [.]:

You have two options for placing the build directory for Sphinx output.
Either, you use a directory "_build" within the root path, or you separate
"source" and "build" directories within the root path.
> Separate source and build directories (y/n) [n]:

Inside the root directory, two more directories will be created; "_templates"
for custom HTML templates and "_static" for custom stylesheets and other
static
files. You can enter another prefix (such as ".") to replace the underscore.
> Name prefix for templates and static dir [_]:

The project name will occur in several places in the built documentation.
> Project name:

23/06/2016 18/3330th Tango Collaboration Meeting

Configuration
Sphinx documentation build configuration file

import re
import sphinx

extensions = ['sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.todo',
 'sphinx.ext.autosummary', 'sphinx.ext.extlinks',
 'sphinx.ext.viewcode']

master_doc = 'contents'
templates_path = ['_templates']

project = 'Sphinx'
copyright = '2007-2016, Georg Brandl and the Sphinx team'
version = sphinx.__released__
release = version
show_authors = True

23/06/2016 19/3330th Tango Collaboration Meeting

Markup
Heading
=======

.. index:: reStructuredText

This is a *sample* paragraph to show **reStructuredText**.
It has `links <http://sphinx-doc.org>`_ and references [1]_.
Some :ref:`internal links <internal>` too.

.. note:: This only shows a small fraction of possible markup.

.. class:: DeviceProxy

 .. method:: exec_cmd(name: str, inarg: any) -> any

 :param name: The command name.

 See also :meth:`read_attr`.

 .. versionadded:: 5.0

23/06/2016 20/3330th Tango Collaboration Meeting

Domains
● Language-specific markup is grouped into a “domain”
● Supports typical API items for different languages, including indices

and doc fields (Javadoc-like @param foo)
● Markup items prefixed, e.g.

.. py:class:: Database

.. cpp:method:: exec_command

● Default domain can be selected per-project/per-file
● Built-in: Python, C, C++, JS, reST
● Further domains can be added by extensions

23/06/2016 21/3330th Tango Collaboration Meeting

Theming
● HTML output is themable, including templates
● Integration into existing layouts possible
● External themes based on layout frameworks, e.g. twitter bootstrap

23/06/2016 22/3330th Tango Collaboration Meeting

Where's the source code?
● Origins: Python docs were (still are) separate from docstrings
● Focus on hand-written, high-quality prose with semantic markup

and cross-refs
● But most tools provide “automatic” API documentation
● Synthesis: autodoc

– Structure still given by doc files
– Pull in docstrings where sensible
– Allows writing high quality docstrings and glue,

without being tied to source code structure
– Keep large examples out of source code

23/06/2016 23/3330th Tango Collaboration Meeting

Autodoc
● Imports the Python code

● Granularity is variable

The database module
===================

.. automodule:: tango.database
 :members:

The database module
===================

.. module:: tango.database

In this module, the following
functions are provided:

.. autofunction:: add_device

.. autofunction:: add_server

 Example: ...

23/06/2016 24/3330th Tango Collaboration Meeting

… Extensions ...

23/06/2016 25/3330th Tango Collaboration Meeting

Intersphinx
● Each project saves an “inventory” of its API items together with

HTML output
● Intersphinx loads that and can generate deep cross-refs to

those API items
● For example, projects can link to the main Python

documentation
● Inventories can be local or remote (downloaded at build time)

● Connect different doc projects that are maintained individually

23/06/2016 26/3330th Tango Collaboration Meeting

More standard extensions
● Internationalization: processes translatable text into gettext .po files and

allows translation with standard tools, e.g. web-based systems like Transifex

● Support for LaTeX style math (with PNG, MathJax output)
● Support for diagrams/graphs with Graphviz

– also automatic inheritance diagrams
● Doctest-ing Python examples
● Showing source code for API items, either formatted with output or just

links on repository browser (GitHub or others)
● Link checking

23/06/2016 27/3330th Tango Collaboration Meeting

Writing extensions
● Extensions have different ways to hook into the build process:

– add new output formats
– add new markup items (directives and roles)

 .. device:: :dev:`reference`
– add configuration values to be recognized in conf.py
– add domain or domain-specific markup
– react to events (like “document parsed”, “cross-reference missing”)
– add format specific things (like JavaScripts for HTML)

● Requires (some) docutils expertise, but tutorial and
plenty of examples available

23/06/2016 28/3330th Tango Collaboration Meeting

Writing extensions
class Todo(Directive):
 has_content = True
 required_arguments = 0
 optional_arguments = 0
 final_argument_whitespace = False

def setup(app):
 app.add_config_value('todo_include_todos', False, 'html')
 app.add_config_value('todo_link_only', False, 'html')

 app.add_node(todo_node,
 html=(visit_todo_node, depart_todo_node),
 latex=(visit_todo_node, depart_todo_node))
 app.add_directive('todo', Todo)

 app.connect('doctree-read', process_todos)
 ...

23/06/2016 29/3330th Tango Collaboration Meeting

Phytron motor controllers

These devices support the `Phytron`_ Motor controller:

 * `MCC-1`_
 * `MCC-2`_
 * `OMC/TMC`_

.. autodev:: phytron.Motor

.. autodev:: phytron.Sensor

.. _Phytron: http://www.phytron.de

.. _MCC-2: http://www.phytron.eu/antrieb/index.php?Set_ID=165&PID=9

.. _MCC-1: http://www.phytron.eu/antrieb/index.php?Set_ID=165&PID=39

.. _OMC/TMC: http://www.phytron.eu/antrieb/index.php?Set_ID=165&PID=10

Example

23/06/2016 30/3330th Tango Collaboration Meeting

Example

23/06/2016 31/3330th Tango Collaboration Meeting

Read the Docs
● rtfd.org
● Automated platform that builds and hosts a project
● Not much configuration necessary for normal setups
● Multiple branches/versions available to build, selectable

when viewing
● Supports i18n
● Supports downloadable documents (PDF, ePub)
● Might be problematic with C/C++ dependencies (PyTango)

23/06/2016 32/3330th Tango Collaboration Meeting

Integration for other languages
● C++ – domain is builtin, autodoc-like functionality supported

via Doxygen bridge (breathe)
● Uses Doxygen to parse C++, extract doc comments

– Directives like .. autodoxygenfile::
– Can embed reStructuredText into Doxygen markup

● Java – Javasphinx provides a domain and automatic API docs

● Third-party projects – might need tweaking or additions
● I'm happy to collaborate – just ask!

23/06/2016 33/3330th Tango Collaboration Meeting

… Questions?

Addresses of interest:

● http://sphinx-doc.org
● http://github.com/sphinx-doc/sphinx
● sphinx-users@googlegroups.com

● g.brandl@fz-juelich.de

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

