
Slide 1

AI-driven Tango 
device driver 
generator
Software development and control systems 
integration services

www.s2innovation.com



AI-driven Tango device driver generator
The goal of the project

Web-based application that automates the generation of Tango Controls device servers 
using Large Language Models (LLMs). 

This application surpasses the functionality of existing tools (like POGO) by also 
implementing device-specific logic based on documentation, and not just generating 
templates.

2Slide



AI-driven Tango device driver generator
Key objectives

1. Automate the generation of device server code.

2. Simplify the process through a GUI and eliminate dependency on desktop software.

3. Use documentation-based code generation via RAG (Retrieval-Augmented Generation).

4. Enable multi-model support (GPT, Claude, Gemini) for comparative code generation.

3Slide



AI-driven Tango device driver generator
Technological Foundation

Tango Controls

1. A SCADA/DCS framework widely used in research and industry.

2. Device servers handle communication with physical devices using C++, Python, or Java.

3. Servers consist of Attributes, Commands, and Device Properties.

4Slide



AI-driven Tango device driver generator
Technological Foundation

Large Language Models

1. Models such as GPT-4o, Gemini 1.5 Pro, and Claude 3 Opus are used.

2. The system leverages prompting strategies (e.g., role prompting, one-shot prompting).

3. JSON-formatted schema inputs are converted into rich prompts.

5Slide



AI-driven Tango device driver generator
Technological Foundation

LangChain and RAG

1. LangChain is used to orchestrate interactions, manage prompts, and handle 

embeddings.

2. RAG enriches the prompt with device-specific documentation stored in a vector

database (FAISS), improving contextual relevance and precision.

6Slide



AI-driven Tango device driver generator
Prompt Engineering

The generated prompt for the LLM includes:

1. A role-defining statement instructing the model to generate Tango device servers.

2. Example implementation (one-shot learning).

3. Embedded documentation snippets.

4. User-defined attributes/commands/properties formatted as numbered lists.

5. Chat history for context-aware conversation continuity.

Special care is taken to ensure prompt formatting complies with LLM best practices for 

accuracy and conciseness.

7Slide



AI-driven Tango device driver generator
GPT-4o (by OpenAI)

Why it's good:

1. Produces very clear and short code.

2. Follows user instructions very well.

3. Rarely makes mistakes.

4. Great when you need precise results.

8Slide



AI-driven Tango device driver generator
Gemini 1.5 Pro (by Google)

Why it's good:

1. Adds things like error checking and input validation automatically.

2. Can guess what might be needed, even if not fully described.

Issues:

1. Sometimes makes mistakes (e.g., uses wrong functions or skips needed parts).

2. The code often needed fixing before it could run.

3. May “hallucinate” — add things not asked for.

94Slide



AI-driven Tango device driver generator
Claude 3 Opus (by Anthropic)

Why it's good:

1. Handles long inputs well.

2. Often accurate and clean in code generation.

3. Needs fewer prompts to understand context.

10Slide



AI-driven Tango device driver generator
Model Comparison - Simple Summary

11Slide

Feature GPT-4o Gemini 1.5 Pro Claude 3 Opus
Best for Clean, simple code Creativity & features Complex inputs
Accuracy (high) (mixed) (good)
Code quality Very high Needs fixing Good
Adds extra features No (just what you ask) Yes Sometimes
Needs manual 
changes Rarely Often Sometimes

Good with long 
context Moderate Moderate Very good



AI-driven Tango device driver generator
Real-world scenarios

Tests:

1. Danfysik 8000 power supply.

2. Metrolab PT2026 teslameter.

3. HPLC pump with PI 872 controller.

4. Eurotherm 3508 temperature controller.

5. Andor Newton CCD camera

12Slide

About ~20% of time saving



AI-driven Tango device driver generator

13Slide



AI-driven Tango device driver generator
Proposed Enhancements

Future development directions include:

1. Automated test code generation.

2. Integration with open-source LLMs.

3. Enhanced search and indexing techniques.

4. Support for additional programming languages beyond Python.

14Slide



AI-driven Tango device driver generator
Real-world scenarios

We are looking for partners for further testing!

Please contact:
Lukasz Zytniak 
Email: lukasz.zytniak@s2innovation.com 
Mobile: (+48) 789 339 875 

15Slide



Thank You
For Your Attention

Slide 16

Lukasz Zytniak – COO of S2Innovation
Email: lukasz.zytniak@s2innovation.com 
Mobile: (+48) 789 339 875 


	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16

