


Summary of the work and tools done at SOLARIS synchrotron 
for managing MySQL Tango archiving database 

Giulianova, 39th Tango Community Meeting 21-23.05.2025
Krzysztof Madura, SOLARIS, CS-IT Section
SOLARIS National Synchrotron Radiation Centre



3

Specifics of Solaris Synchrotron

● What is a Synchrotron
● Linear accelerator and a storage ring
● Experimental end stations
● Other scientific equipment in Solaris 

(Cryo-EM)



4

Tango Archiving in Solaris, how it is managed?

● Multiple MySQL databases for different components of 
the synchrotron, hosted on individual virtual machines

● Beam-line attributes are stored independently in their 
separate archiving databases

● Few devices such as HUC’s have their own internal 
MySQL databases, SQLite back-end could be useful 
here

● Code names are used in domain names as opposed to 
official beam-line names

● Archive event periods are not lower than one second, 
usually every 5-60 seconds or more with additional 
absolute change event

● Cryo-electron microscopes are not part of the tango 
infrastructure, no need for archiving

● Possible migration towards TimescaleDB
● Current amount of data is at manageable level

MACHINE

BL04ID

BL04BMBL05ID
BL06ID

BL08BM

BL09BM

BL10BM

HUC1

HUC2



5

OMDT – Old Machine Data Transfer
● A tool for transferring data from old MySQL HDB database

to new HDB++ database
● Modify database connection parameters in omdt_config.py before 

running this program – the program will detect lack of change or it will 
fail to connect to the databases

● Accepts two optional arguments, -sf <number> to resume copying 
process from specific location and -tm for testing and debugging 
purposes, where it only copies 1000 rows per attribute

● Three phases:
● Copy attribute data to att_conf table
● Copy attribute settings to att_parameter table
● Copy all data rows of an attribute

● There are no duplicates, when script is running for the second time, first 
and second phase will only update internal lists and variables of the 
tool

● Every time a program is run it creates a log file
● Log file is automatically deleted if it doesn’t contain any errors
● omdt_clear_logs is used to clean logs
● omdt_find_problems can locate some issues within old HDB database



6

OMDT – Old Machine Data Transfer

● During copying process each attribute takes 
two lines in the console

● First line contains location, id in HDB 
database, and current progress in %

● Second line shows current position 
(important when restarting with -sf option), 
progress in % and progress as number of 
copied rows

● At the end the program will print out 
performance statistics

● Maybe not extremely efficient considering 
how often it will be used (only once)

● Advice to use screen or other terminal 
multiplexer in order to keep it running when 
terminal is closed (ssh connection)



7
Stopka

Zordon – archtango module

• Zordon is Solaris internal tool for displaying current 
status of several systems on the screen, usually 
high resolution monitor in the CS-IT section room

• It is web-based, you can view it in your browser in 
solaris internal network

• Uses pytest
• Has a retro mode!



8

Zordon – archtango module

● Uses SQLite database file to store information about attributes that we want to check
● Not all attributes should be analysed (some are only used for testing or are temporary)
● First tests are used to check database connection and if lists of attributes are valid
● Pytest loops through attributes and checks if their archiving works properly
● There are two testing modes depending on how an attribute is stored in the database

● For attributes with event periods it checks how many rows were stored during last 8 
hours
● Each such attribute described in SQLite database has minimum amount of rows set
● Attributes with abnormal amount of rows are also detected

● For attributes without event periods it fetches last row from archiving database and 
compares dates with most recent reading on a device, and if those dates match, we 
assume everything is working correctly

● Zordon provides only an insight on what may be wrong, doesn’t explain exactly what is 
the issue

● A better monitoring tool made specifically for archiving could be a nicer option – zordon 
module acts more like a proof of concept



9
Stopka

Other tools - 2024-07-29_value_error_null_detector

● The hdbpp-viewer tool in the version we are currently using has a bug preventing from loading any further data 
when it encounters a row with “value_r” and “att_error_desc_id” columns both containing a NULL value

● Haven’t tested if this error exists in newer versions of hdbpp-viewer
● When hdbpp-viewer encounters this row, if “value_r” contains NULL value, it assumes something went wrong 

and will fetch error message from att_error_desc table with id which is also NULL. An error dialog is shown, and 
any subsequent search will show no results making it look to our users as if there is no data

● In order to fix this temporarily on some attributes I made a simple tool which scans the entire database looking 
for any rows with such an issue, so I could manually remove them



10

Other tools - 2024-08-28_status_cleaner

● A sudden increase in size of the att_scalar_devstring_ro table
● A bug in a device server was found. When physical device was shut down during summer maintenance, a 

device server tried to connect to it over and over again, each time executing an archive event for Status 
attribute. Status string contained “DevFailed” text concatenated with traceback, which was over 16MB in size.

● The “sizeCounter” script scans the entire table and categorises strings length into several groups: 0B, <=1KB, 
<=10KB, <=100KB, <=1MB, >1MB. This way we know how much data various attributes store in this table.

● The “locate” script looks for any rows starting with “DevFailed” with a massive text next to it. “drop” option in 
this script removes all such rows freeing disk space 



11

Other tools - 2024-11-27_rf_dumper

● Our RF team asks for a quick and easy tool to dump data from several attributes in the database to CSV file
● This data is planned to be used for AI and Machine Learning purposes
● There are two scripts:

● “rf_dumper_hdbpp_correlated” – it mimics “correlated” option as seen in hdbpp-viewer
● “rf_dumper_full_dump” – downloads rows of data as it is, without manipulating them

● Both scripts accept three optional arguments:
● Starting date – YYYY-MM-DD format, default value: midnight, over 7 days ago
● Ending date – YYYY-MM-DD format, default value: previous midnight
● File name – default: automatically generated CSV file name



12

Other tools - 2024-06-18_table_cloning_tool

● A table contained an abysmal amount of stored unnecessary images to be deleted
● Deletion process always failed at specific place and as it turned out, several rows were corrupted at some time 

in the past, but it had no performance effect on any later inserts
● We couldn’t execute REPAIR TABLE command due to space constraints, and IT department would had to find 

a way to reallocate more disk space to solve it
● All rows from the problematic attribute were manually removed except those very few broken rows, but as you 

probably know, disk usage will be still the same if we won’t repair this table
● To solve this problem I have made a tool which replicates table schema, creates a new table and transfers all 

the good rows between two tables. “cloningTool” script does just that, while “verifyTool” script ensures the data 
is all correct

● In the and we were left with a DROP TABLE and ALTER TABLE
● commands successfully replacing broken table with a new one,
● freeing over 1TB of disk space



13

Thank you for your attention!


	Slajd 1
	Kliknij, aby dodać tytuł
	Kliknij, aby dodać tytuł (2)
	Kliknij, aby dodać tytuł (3)
	Kliknij, aby dodać tytuł (4)
	Slajd 6
	Kliknij, aby dodać tytuł (5)
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Kliknij, aby dodać tytuł (6)

