

Elettra Sincrotrone Trieste

Elettra 2.0 status update

Elettra

- 2/2.4 GeV 3rd generation light source, operating Oct 1993
- •
- •
- 2.0 GeV (75% of user time), 2.4 GeV (25% of user time) 300 mA at 2.0 GeV (lifetime 26 h), 140 mA at 2.4 GeV (lifetime 40 h) top-up: 1 mA every 6 min at 2.0 GeV, 1 mA every 20 min at 2.4 GeV filling pattern: single, few, multi. Typical: multibunch filled at 95% (864 ns) and hybrid (multibunch with a single bunch in the dark gap)

I.1L	TwinMic	MCX
2L	Nanospectroscopy	ALOISA
.2L	NanoESCA	BEAR BEAR
.2R	FEL	
.2L	ESCA Microscopy	APE BACH
.2R	SuperESCA	KRay Flux
3.2L	Spectromicroscopy	DYAL APE
.2R	VUV Photoemission	XRF
.2	CiRo	102100 DXRL
.2L	SAX	iuvs
5.2R	XRP.	VUV Photoemission BaDEIPh
.1L	Materials Science	XAFS XAFS
6.1R	SYRMEP	XRD2
6.2R	GasPhase	Xpress

Fermi

- Free Electron Laser, seeded, • ultra-short, high-brilliance, XÚV pulses
- FEL-1 single-stage high-gain harmonic •

Parameter

Repetition rate

Units

Hz

Value

10 - 50

Key objectives:

- brilliance and coherence: hundredfold increase in brilliance and photon beam coherence
- biological and chemical science: enhanced tools for structural biology and chemistry

Storage ring upgrade:

- Low emittance ring -> reduce the present beam emittance by a factor of 50, resulting in a photon source with higher brilliance and coherence.
- Include 2 superconducting bending magnets that will enhance production of photons with energy above 60 keV

Beamline enhancements:

- Advanced Spectroscopy: Enhanced capabilities in X-ray absorption spectroscopy, photoemission spectroscopy, and high-resolution diffraction
- Coherent Diffraction Imaging: This technique will be expanded to provide higher-resolution 3D imaging
- Time-resolved Experiments: Enhanced ability to capture ultrafast processes

Cryogenic and Vacuum Systems:

 To support the advanced beamline capabilities, the cryogenic and vacuum systems will be overhauled

L.Pivetta, 21-05-2025

CS highlights

- very few VME front-end computers stay in operation!
- but we'll have small embedded systems (beaglebone) and "large embedde systems" real-time feed-forward and feed-back loops run on Linux
- multi-core, large memory server class machines
- hard real-time by hardware partitioning and CPU isolation •
- 100+ Gb, 10 Gb and 1 Gb ethernet
- software architecture exploiting DPDK framework
- feedback loops running at > 50 KHz repetition rate
- can acquire a single BPM at 1+ MHz rate
- can acquire the whole orbit (~100 BPM) at 10 KHz repetition rate
- cumbia library for GUIs
- ...and, of course, Tango

Embedded systems

- Several generations OS, difficult to maintain, outdated compilers
- FLOP/Voltumna: a custom Linux distribution based on Yocto Project
- Available for:
 - BeagleBone, BeagleBoneAl
 - Artesyn MVME5100, MVME6100, MVME7100, MVME2500
 - Jetway NUC (Intel Trail-M N2930 SoC Processor)
 - Advantec PCM-3362N (PC/104+)
 - Terasic Sockit (Cortex-A9 + FPGA)
 - AAEON UP Xtreme (Intel WHL-U Core i7/i5/i3/Celeron)
 - Supermicro SSG-6039P-E1CR16 (4U, dual socket Intel Xeon)
 - Supermicro SYS-6018R, SYS-5019P, SYS-1028U (1U, single socket Intel Xeon)
 - Dell Poweredge R750
 - Supermicro SYS-510D (1U, single socket Intel Xeon D)
- + : Hardware optimizations
- + : Strict revision control
- 100+ systems deployed

RPS_AB01.05 RPS_AB01.15 RPS_AB01.20

DDS ABO1 25

RPS_AB01.30

RPS AB01.40

RPS AB02.05

RPS_AB02.15 RPS_AB02.20

RPS AB02.25

RPS_AB02.30 RPS_AB02.40

RPS_AB03.05

BPS AB03.15

RPS AB03.20

RPS_AB03.25

RPS AB03.30

RPS AB03.40

RPS_AB04.05 RPS_AB04.15

RPS AB04.20

RPS AB0425

RPS_AB04.20 RPS_AB04.30 RPS_AB04.40

RPS AB0505

RPS_AB05.15 RPS_AB05.20

RPS AB05.25

BPS AB0530

RPS AB05.40

RPS_AB06.05

BPS_AB0615

RPS AB06.20

RPS AB06.25

RPS AB06.30

RPS AB06.40

RPS_AB07.05

BPS AB0715

RPS_AB07.20

RPS_AB07.25

BPS AB07.30

RPS AB07.40

RPS_AB08.05 RPS_AB08.15

RPS AROR 20

RPS_AB08.25 RPS_AB08.30 RPS_AB08.40

RPS AB09.05

RPS_AB09.15 RPS_AB09.20

RPS AB09.25

RPS_AB09.30 RPS_AB09.40

RPS_AB10.05

RPS AB 10.15

RPS_AB10.20

RPS_AB10.25

BPS AB 10:30

RPS AB 10.40

RPS_AB11.05

RPS AB11.15

RPS AB11.20

RPS AB1125

RPS AB11.3

RPS AB1140

RPS_AB12.05 RPS_AB12.15 RPS_AB12.20

RPS_AB12.25 RPS_AB12.30

Elettra 2.0 – fiber optics

BC 4801 10

RC AB02.05

RC_AB02.10

RC_AB03.05

RC_AB03.10

RC AB04.05

RC AB04.10

RC AB05.05

RC AB05 10

RC_AB06.05

RC AB06.10

RC_AB07.05

RC_AB07.10

RC AB08.05

RC AB08.10

RC AA09.05

RC AB09.05

RC AB09.10

RC AA10.05

RC AB10.05

RC AB10 10

RC_AB12.05

RC AB12.10

-

-

_

- Multiple star topology
- OM4/OS2 FO, 100+ GB capable
- Extreme Networks core and peripheral switches
- Modular design, capable to grow with requirements
- Physical partitioning, functional partitioning
- ~100 switch foreseen
- Many VLANs

L.Pivetta, 21-05-2025

cat 6a F/FTP structured cabling

Trieste

- 24 RC racks to equipment
- 24 RPS isle distribution

2

2

NETBOX_AB06.05

NETBOX S06.05

2

2

NETBOX AB12.05

NETBOX S12.05

Elettra 2.0 – real-time processing NG Sincrotrone

Intel + Linux Foundation support

Elettra

Trieste

- framework for receiving, sending and processing packets and for assigning memory and CPU resources to real-time applications
- reserve some HW resources (NIC, CPU core...) to RT application(s)
 - configure the Environment Abstraction Layer (EAL) to enable access
 - application code runs full speed on reserved core(s)
 - optimized lock-less ring buffers and inter-process communication libraries

PDK

Coding in C

1 CPU core manages up to 9 Million packets per second (9 Mpps) on a 10 GbE nic 4 CPU cores manage up to 116 Mpps on a 100 GbE nic

L.Pivetta, 21-05-2025

Elettra 2.0 – real-time processing NGQ

us

Operating systems

- Linux Debian 12 for workstations
- Linux Voltumna for servers
 - Voltumna is a in-house maintained variant of Yocto Linux used also in Fermi

Tango control system

- C++ and python device servers
- C++, python, and MATLAB Tango bindings for client software
- cumbia (Qt +Tango) framework for C++ graphic control panels
- PyQt for python graphic panels

www.elettra.eu