

Put in here Name Surname, day month yearDelete this text and put in here Title of the Event/Conference, Location

Tango's Multiclasses: How to use
them to simplify development and

deployment and get the configuration
right (an attempt to suggest a small

and humble guideline for device
server development)

It is a very mundane topic… You are
warned!

2

Alessio Igor Bogani 22/05/202539th Tango Community meeting at INAF, Giulianova

How would you integrate this device?

3

Alessio Igor Bogani 22/05/202539th Tango Community meeting at INAF, Giulianova

The simplest approach

The monolithic one:

One instrument == one Tango class == one Tango Device Server

The DSs made this way are:
● Quite complex
● They contain a lot of duplicate code
● Difficult to maintain consistent quality across devices (bug fixes)
● Prone to errors

4

Alessio Igor Bogani 22/05/202539th Tango Community meeting at INAF, Giulianova

A better approach

The divide et impera one:

Due to the growing number and complexity of the instrumentation
devices, we started to split our DS into smaller DSs connected
using DeviceProxy (weak dependency through a string in the
Device Property). In this way:
● DSs became more numerous but simpler
● We gained the chance to reuse the more abstract ones
● We could use a few of them as 'interfaces'

Unfortunately this approach also has its downsides:
● We faced server installation and configuration proliferation
● We experienced difficulty in visualizing devices in the tree (Jive)
● We encountered a high rate of human configuration errors
● We had to handle version management complexity

5

Alessio Igor Bogani 22/05/202539th Tango Community meeting at INAF, Giulianova

A better approach

6

Alessio Igor Bogani 22/05/202539th Tango Community meeting at INAF, Giulianova

More sophisticated approach

The Multiclass one:

Try to mitigate the latest problems without adding new ones or
reusing the oldest approach:

 Combining multiple Tango classes into a single DS

 Keeping functionally related classes 'close' (also in Jive)

 Simplifying installation, development, and configuration

 Aligning DS classes naturally (in the same executable)

 Updating incrementally without risk to previous installations
because all necessary classes are included ("self-contained”)

7

Alessio Igor Bogani 22/05/202539th Tango Community meeting at INAF, Giulianova

More sophisticated approach

We implement this approach at Elettra by combining:

 git repositories (either managed as single classes or combined in
a multiclass as git submodules)

 Simple path convention for multiclass case
(deps/repositoryname)

 Use of wildcard (*) in our Makefile

In this way we keep sources (and bug fixes) in one place and
avoid git repository proliferation. Additionaly we prevent
configuration errors, using custom code, by blocking DS
startup if duplicate resources exist or DeviceProxy points
outside of the Multiclass.

8

Alessio Igor Bogani 22/05/202539th Tango Community meeting at INAF, Giulianova

More sophisticated approach

9

Alessio Igor Bogani 22/05/202539th Tango Community meeting at INAF, Giulianova

Future Goals

 Skip the network stack (CORBA) for internal communications
when DeviceProxy recognizes that the origin and destination
are within the same Multiclass. This allows it to resolve
invocations with little more than an internal function call.

 By moving beyond the "one instrument == one Tango class ==
one Tango Device Server" approach, we can use a Tango class
as a more generic computational unit for very dense DSs that
maintain inspectability with traditional tools (Jive)

 Promote programming by composition

10

www.elettra.eu

Thank you!

	Slide 1
	Tango's Multiclasses: How to use them to simplify development a
	Initial and simplest approach
	Slide 4
	Slide 5
	Slide 6
	More sofistaced approach
	Slide 8
	Slide 9
	Future Goals & Vision
	Slide 11

