
PyTango Status Report
Anton Joubert (SARAO)

Tango 2020 summer status update meeting

Wednesday, 10 June 2020

*

GitHub: ajoubertza/pytango-status-updates

Slides: https://ajoubertza.github.io/pytango-status-updates/

- 1 -

https://github.com/ajoubertza
https://sarao.ac.za/
https://github.com/ajoubertza/pytango-status-updates
https://ajoubertza.github.io/pytango-status-updates/

PyTango? Quick reminder
Python library

Binding over the C++ tango library

... using boost-python (future: pybind11)

Relies on numpy

Multi OS: Linux, Windows, Mac (with Docker...)

Works on Python 2.7, 3.5, 3.6, 3.7, (probably 3.8)

- 2 -

Recent releases
Features in 9.3.1 and 9.3.2

MultiDeviceTestContext

EnsureOmniThread

Windows wheels on PyPI

v9.3.1 working
v9.3.2 broken :-(

327 commits, 28 PRs, 29 issues

- 3 -

Recent releases
Fixes in 9.3.1 and 9.3.2

Memory leak for DevEncoded attributes

Dynamic enum attributes created without labels

Python 3 issues

Documentation

Improvements for Linux packaging

Thanks to many first-time contributors: rhomspuron, asoderq, reszelaz and
wyrdmeister!

- 4 -

MultiDeviceTestContext
Like DeviceTestContext, but can launch multiple devices. In fact
DeviceTestContext inherits from MultiDeviceTestContext.

Contributed by reszelaz - thanks!

Trivial example:

devices_info = (
 {"class": Device1,
 "devices": [{"name": "test/device1/1",
 "properties": {"MyProperty": ["a", "b"]}}]
 },
 {"class": Device2,
 "devices": [{"name": "test/device2/1"}]
 }
)

def test_devices():
 with MultiDeviceTestContext(devices_info, process=True) as context:
 proxy1 = context.get_device("test/device1/1")
 proxy2 = context.get_device("test/device2/1")
 assert proxy1.attr1 == 1
 assert proxy2.attr2 == 2

- 5 -

https://github.com/reszelaz

MultiDeviceTestContext
Detailed example available in pytango/examples

Contributed by DrewDevereux - thanks!

Using pytest, with tango_context a fixture that launches
MultiDeviceTestContext

...
class TestMasterWorkerIntegration:
 def test_master_turn_worker_on(self, tango_context):
 master = tango_context.get_device("device/master/1")
 worker_1 = tango_context.get_device("device/worker/1")
 worker_2 = tango_context.get_device("device/worker/2")

 # check initial state: both workers are off
 assert worker_1.is_on == False
 assert worker_2.is_on == False

 # tell master to enable worker_1
 master.turn_worker_on(1)

 # check worker_1 is now on, and worker_2 is still off
 assert worker_1.is_on == True
 assert worker_2.is_on == False
...

- 6 -

https://github.com/tango-controls/pytango/tree/develop/examples/multidevicetestcontext
https://github.com/DrewDevereux

MultiDeviceTestContext
Warning

If starting device more than once in the same process (e.g., once per test case),
expect a segmentation fault!

...TestContext(..., process=False) is the default.

Options:

...TestContext(..., process=True)

nosetest can use nose_xunitmp plugin: --with-xunitmp

pytest can use pytest-forked plugin: --forked

- 7 -

EnsureOmniThread
Some issue reported when subscribing/unsubscribing to events from standard
Python threads. Event channel not responding - see issue #307.

cppTango uses omniorb threads (omnithreads), and their IDs are used for
some thread locks.

Main thread in PyTango device was always marked as an omnithread.

Other user threads, typically threading.Thread, are not.

New EnsureOmniThread context handler added to help with this.

Note: Some of the issues this handler prevents have been fixed in cppTango,
so you may be fine without it! Sorry, but it is confusing...

- 8 -

https://github.com/tango-controls/pytango/issues/307
https://github.com/tango-controls/TangoTickets/issues/34#issuecomment-633326473

EnsureOmniThread
Example

import tango
from threading import Thread
from time import sleep

def thread_task():
 with tango.EnsureOmniThread():
 eid = dp.subscribe_event(
 "double_scalar", tango.EventType.PERIODIC_EVENT, cb)
 while running:
 print(f"num events stored {len(cb.get_events())}")
 sleep(1)
 dp.unsubscribe_event(eid)

cb = tango.utils.EventCallback() # print events to stdout
dp = tango.DeviceProxy("sys/tg_test/1")
dp.poll_attribute("double_scalar", 1000)

thread = Thread(target=thread_task)
running = True
thread.start()
sleep(5)
running = False
thread.join()

- 9 -

EnsureOmniThread
Thread pools

Not sure how it could be used with concurrent.futures.ThreadPoolExecutor -
see discussion here.

The gevent green mode also uses a thread pool, so similar problem...

- 10 -

https://pytango.readthedocs.io/en/stable/howto.html#using-clients-with-multithreading

Asynchronous PyTango
Also called green modes, checkout the docs:

pytango.readthedocs.io/en/stable/green_modes/green.html

tango.GreenMode.Synchronous # default
tango.GreenMode.Futures
tango.GreenMode.Gevent
tango.GreenMode.Asyncio

Asyncio recommended for new projects that want async features.

No plans to remove Futures or Gevent, but if support becomes problematic,
Asyncio will get highest priority. This is because asyncio is the standard for
Python.

Discussion notes

- 11 -

http://pytango.readthedocs.io/en/stable/green_modes/green.html
https://github.com/tango-controls/tango-kernel-followup/blob/8a1511a63b40091d306e6fb33437f7aea4734d9c/2020/2020-02-27/Minutes.md#pytango-news

Compatibility
Python

Maintain support for 2.7, 3.5, 3.6, and 3.7.

Adding CI testing to verify 3.8.

Expect 3.8 to be fine, but don't have Python 3.8 Conda packages for CI
dependencies yet.

- 12 -

Compatibility
cppTango

Up to now, matching major.minor releases of cppTango and PyTango should
work.

Examples:

cppTango	PyTango	Works?
 9.3.4 | 9.3.2 | yes
 9.3.4 | 9.4.0 | maybe??
 9.4.1 | 9.4.0 | yes

Note cppTango 9.4.x will not be Application Binary Interface (ABI) compatible
with cppTango 9.3.x, so not sure about PyTango.

After PyTango 9.4.0 is released, don't plan 9.3.x patches. Hopefully we can get
PyTango to support both cppTango 9.3.x and 9.4.x.

- 13 -

Packaging
Installable versions

pip install pytango != apt-get install python-tango

PyPI has the latest

but binding extension not compiled for Linux.
binding is compiled and statically linked for Windows.

Conda

v9.3.1 available on https://anaconda.org/tango-controls/pytango
Busy with v9.3.2, moving to Github Actions here.

Linux packages

The binding is already compiled code, so quick to install.
Typically a few versions behind. Latest is v9.2.5?

Volunteers?: Pipelines to build Linux packages: Debian, Ubuntu, CentOS

- 14 -

https://anaconda.org/tango-controls/pytango
https://github.com/tango-controls/pytango-conda-recipes

Packaging
Docker images: SKA, with help from Tango Community

Dockerfiles: https://gitlab.com/ska-telescope/ska-docker

Images: https://nexus.engageska-portugal.pt

Based on Debian 10, latest use TangoSourceDistribution 9.3.4-rc4

$ docker pull nexus.engageska-portugal.pt/ska-docker/tango-pytango:9.3.2

Warning: This was pushed to docker hub 6 months ago as
https://hub.docker.com/r/tangocs/tango-pytango, but not currently being
updated from SKA build pipeline.

- 15 -

https://gitlab.com/ska-telescope/ska-docker
https://nexus.engageska-portugal.pt/
https://github.com/tango-controls/TangoSourceDistribution/releases/
https://hub.docker.com/r/tangocs/tango-pytango

New features?
DeviceProxy support for TANGO_HOST with #dbase=no

class MyDevice(Device):
 @command(dtype_in=str, dtype_out=int)
 def ping_command(self, friend):
 dp = DeviceProxy(friend)
 return dp.ping()

def test_access():
 devices_info = ({"class": MyDevice,
 "devices": [{"name": "my/dev/1"}, {"name": "my/dev/2"}]},)
 with MultiDeviceTestContext(devices_info) as context:
 dp1 = context.get_device("my/dev/1")
 dev2_fqdn = context.get_device_access("my/dev/2")
 assert dp1.ping_command(dev2_fqdn) < 1000 # works
 assert dp1.ping_command("my/dev/2") < 1000 # fails

dev2_fqdn something like tango://172.17.0.3:48493/my/dev/2#dbase=no

modify test context to set TANGO_HOST=172.17.0.3:48493#dbase=no
temporarily

modify DeviceProxy to rewrite simple Tango names if TANGO_HOST has
#dbase=no - 16 -

New features?
More testing utilities

Goal is to make Tango devices more testable.

pytest fixture like MultiDeviceTestContext example?

Mock DeviceProxy class, including events?

Support forwarded attributes with DeviceTestContext?

No longer pursuing approach suggested as ICALECPS 2019:
@mock.patch('tango.server.Device', faketango.Device).

- 17 -

New features?
Pull docstrings into Command descriptions?

class PowerSupply(Device):

 @command(dtype_in=float, doc_in="Power supply output voltage")
 def voltage(self, set_point):
 self.set_hardware(set_point)

class PowerSupply(Device):

 @command(dtype_in=float)
 def voltage(self, set_point):
 """Power supply output voltage."""
 self.set_hardware(set_point)

Beneficial for IDEs, Sphinx autodoc, and more Pythonic. Already works this
way for attributes.

Easiest to set doc_in and doc_out to func.__doc__.

- 18 -

New features?
Python logging as standard, sends to TANGO Logging Service?

Optionally add init_logging method and logger object on Device?

class PowerSupply(Device):

 @command
 def calibrate(self):
 self.logger.info('Calibrating...')
 # instead of info_stream('Calibrating...')

User could add/remove handlers, e.g., syslog, Elastic, or Tango Logging
Service.

- 19 -

PyTango development
Hosting

Repo: github.com/tango-controls/pytango
Docs: pytango.readthedocs.io
Continuous Integration: TravisCI, using Conda, Py 2.7, 3.5, 3.6, 3.7
Windows packages: AppVeyor (TODO: dedicated tango-controls user)

Issues

Specific issues: report on GitHub - the more detail the better
Questions: use the TANGO Forum

Contributing

Typical branched Git workflow. Main branch is develop
Fork the repo, make it better, make a PR. Thanks!
More info in how-to-contribute.

- 20 -

https://github.com/tango-controls/pytango
https://pytango.readthedocs.io/
https://github.com/tango-controls/pytango/issues
https://www.tango-controls.org/community/forum/c/development/python
https://pytango.readthedocs.io/en/latest/how-to-contribute.html

Done! Any questions?
GitHub: ajoubertza/pytango-status-updates

Slides: https://ajoubertza.github.io/pytango-status-updates/

- 21 -

https://github.com/ajoubertza/pytango-status-updates
https://ajoubertza.github.io/pytango-status-updates/

