
Matteo Di Carlo (INAF-OAAB)

Yilmaz U., Harding P., Bartolini M., 

Le Roux G., Dolci M.

CI-CD Practices with the TANGO-controls framework in 

the context of the Square Kilometre Array (SKA) 

Telescope Project



• International effort to build two radio interferometers in South 
Africa and Australia

• One Observatory monitored and controlled from the global 
headquarters (GHQ) based in the United Kingdom at Jodrell Bank

• Software development process is Agile 

– Mainly incremental and iterative 

– Many teams (18) with a specialized team (known as system team) devoted 
to support the continuous Integration, test automation and continuous 
Deployment. 

SKA Project



• When many parts of the project are developed independently 
for a long period of time (weeks or longer), 

• Code base and build environments diverges 

• When changes are integrated

– Weeks in verifying that everything works

– Developers spend time in solving bugs introduced months earlier 

Why CI-CD?



• Set of development practices that requires developers to 
integrate code into a shared repository several times a day. 

• Each check-in is then verified by an automated build, allowing 
teams to detect problems early.

Continuous integration



• Single source repository (for each component of the system) 

• minimize the use of branching

• Automate the build (build all in one command)

• Automate testing (together with the build) 

• Every commit should build on an integration machine

• Commit often! (at least once per day)

• the smaller is the change the easier is the fix 

• Build fast (so that a problem in integration can be found quickly)

• Multi-stage deployment: every build software must be tested in different 
environments

Ref: martinfowler.com/articles/continuousIntegration.html

The practices

martinfowler.com/articles/continuousIntegration.html


• Continuous delivery

– Automate the delivery of new releases of software

– Deployment has to be predictable and sustainable

• The code must be in a deployable state

• Testing needs to cover enough of your codebase.

• Continuous deployment

– One step further: every single commit to the software that passes all 
the stages of the build and test pipeline is deployed into the 
production environment

Delivery vs Deployment



TANGO-controls framework

Ref: www.tango-controls.org

http://www.tango-controls.org/


• SKA == set of elements == a set software modules 

• For each module there is one repository

• For each repository there is one docker image

– convenient way to package up applications and preconfigured server 
environments

Containerization



SKA-Docker - Containerized environment 

for TANGO-controls application
Debian
buster

TANGO 
dependencies

TANGO C++ TANGO Java

TANGO RestTANGO python

MariaDB

TANGO 
database

SKA Module 0 SKA Module 1 SKA Module n…

extend

Docker image

TANGO 
DatabaseDS

TANGO 
Archiver

TANGO 
ArchiverDB

TANGO 
Dsconfig

TANGO itango

TANGO Panic

TANGO test

TANGO VNC

TANGO Panic
GUI



• Kubernetes (k8s) for container orchestration (kubernetes.io)
– Service == TANGO Device Server

• Helm for packaging SKA k8s applications (helm.sh)
– Tool for managing Kubernetes charts 
– Chart is a package of pre-configured Kubernetes resources (set of 

information for running a Kubernetes application)

For each SKA element there must be an helm chart for running it in 
k8s!

Use of Makefiles for lifecycle management (one command for build 
images, start application using helm, test application and clean)!

Kubernetes and Helm

https://kubernetes.io/
https://helm.sh/


• Helm has the concept of dependency

– An helm chart can have one or more sub-charts

• The integration of SKA elements can be done with this concept

Integration with Helm

Element
B

Depends-on

Helm
Chart

KEY

Element
D

Element
E

Element
C

Element
G

Element
F

Element
A



• Operational aspects of using dependencies: the sub-charts are

– aggregated into a single set; then

– sorted by type followed by name; and then

– created/updated in that order.

Helm sub-charts Architecture

A

C
B D

G
F

EUMBRELLA

For every SKA 
element, there is at

least an umbrella
chart for integration

testing

B

D

F

UMBRELLAA

G

UMBRELLA

B



• Web-based DevOps lifecycle tool that provides a Git-repository 
manager providing wiki, issue-tracking and continuous 
integration and deployment pipeline features

GitLab

Environments allow control of the 
continuous deployment done in k8s



Gitlab pipeline – run-time



• For each repo and for each commit (!): 

– install the (umbrella) chart in an isolated namespace

– wait for every container to be running

– For the tests:

• Create a k8s pod (a container) in the isolated namespace

• Run pytest inside the above pod

• Return the tests results

– uninstall the (umbrella) chart

Deployment and Testing



Example pipeline



Conclusion

• Single source repository (for each component of the system) 

• minimize the use of branching

• Automate the build (build all in one command)

• Automate testing (together with the build) 

• Every commit should build on an integration machine

• Build fast (so that a problem in integration can be found quickly)

• Multi-stage deployment: every build software must be tested in 
different environments

Every component has its own 
repository with story based branching 

(2 weeks lifecycle)

Large use of Makefile

Every commit trigger a GitLab 
pipeline that build, lint, execute unit-

testing and integration testing

Integration testing in Gitlab is done within an isolated k8s namespace which are 
completely separate each other
One namespace is kept as “blessed” environment

It depends: building the ska-docker
images can take 30 minutes, while

testing takes up to 10 minutes



Thanks


