
React-based widgets for
Waltz-CS

Chernov Vasily, INR RAS

1

Waltz is:
1. All-in-one web application

like JIVE and ASTOR
a. ui is oriented for multi device

monitoring
b. control devices
c. visualize data, save graphs

2. A platform for web based
GUIs.
a. A set of widgets for

constructing custom UI
b. Pluggable architecture
c. Modern build tools

(webpack/rollup)
d. Middleware connectors to

different SCADA (Piazza
project)

2

3

Grid Widget

4

Widget purpose - to build interfaces for
multi device monitoring with ability to plot
Widget can:

- provide simple interface tab for
device

- with attributes
- with clickable void commands

- provide graphs for polled attributes
- graph can show attributes

from different devices
- configure device and graphic tabs
- configure grid geometry and tab

color (for better navigation)

Component

properties

state

render()

setS
tate()

Quick React overview
- React is the most popular UI framework for JS
- Redux as storage

5

Component

properties

state

render() ...

Redux

state

action 1

action 2

function Example(props) {
 const {name} = props
 const [count, setCount] = useState(0);
 return <h1>{count}, {name}</h1>;
}

Grid Widget for Waltz

6

Redux STATE

interface GridWidgetStore {
 general?: {
 geometry?:{cols: number,rows: number}
 bgcolor?: string,
 plots?: Array<{id: string, name: string}>
 },
 devices?: Array<{
 name: {host: string,device: string},
 state: string,
 attributes?: Array<{
 name: string, value?: string|number,
 history?: Array<{
 time: number, value: string|number
 }>
 }>, commands?: Array<{name: string}>
 }>
 config?: {
 devices?: Array<{
 name: {host: string,device: string},
 attributes?: Array<{
 name: string, show?: boolean,
 pollingPeriodS?: number,
 displayPlot?: string
 }>,
 commands?: Array<{
 name: string, show?: boolean,
 }>}>}}

Redux ACTIONS

setState: (state: GridWidgetStore) => {...}
setDevice: (device: Device) => {...}
removeDevice: (device: Device) => {...}
updateAttributes: (device: Device) => {...}
applyDiff: (diff: GridWidgetStore) => {...}
setGeometry: (
 geom: GridWidgetGeometry) => {...}
setBgColor: (color: string) => {...}
createNewPlot: (plotId: string) => {...}
removePlot: (plot: PlotSettings) => {...}
setPlot: (plot: PlotSettings) => {...}
runCommand: (
 device: DeviceIdentifier,
 name: String,
 cb: CommandCallback) => {...}

Grid Widget
Component

Waltz
Custom code

Waltz Integration: Schema

7

makeGridWidget(cbk)

API

Component

Redux Store

ReactDom.render(el)

W
al

tz
 li

bs

Ta
ng

o
C

S

const grid_widget = webix.protoUI({
 name: 'grid_widget',
 //...
 $init(config){
 this.$ready.push(() => {
 ReactDOM.render(
 <config.GridWidget/>,
 this.getNode())
 })
 //...
 }
}, TangoDropTarget, webix.ui.view);

export default class GridViewWidget extends WaltzWidget {
 //...
 ui(){
 const {GridWidget, api} = makeGridWidget(console.log);
 return {
 //...
 GridWidget,
 api,
 //...
 }
 }
 //...
 async restoreState(){
 //...
 const state = context.get(this.id, this.api.store.getState())
 this.api.setState(state);
 }
 //...
}

GridViewWidget

ui()

grid_widget

$init()

grid_widget_layout

ui()

api()

Waltz Integration: Project structure

8

@waltz-controls/waltz @waltz-controls/waltz-grid-widget

@waltz-controls/waltz-shared-libs

@waltz-controls/waltz-shared-libs

Testing code

makeGridWidget(cbk)

GridWidget React component

react react-dom redux

react-redux @reduxjs/toolkit

plotly.js

@waltz-controls/waltz-shared-libs

custom connector code

@waltz-controls/waltz-grid-widget

@waltz-controls/[LIBS]

- GridWidget is a
standalone React
Component

- Easy to test
- Architecture relies on a

shared-libs project since
we have to have exact
same React/Redux
instances along projects

- Custom code that
connects Waltz
middleware and
GridWidget is stored in
the main Waltz repository

Waltz Integration: Sharing libraries

9

module.exports = {
 context: __dirname,
 entry: {
 vendor: ['react', 'redux', /*...*/],
 },
 /*...*/

 plugins: [
 new webpack.DllPlugin({
 path: "../dist/[name]-manifest.json",
 format: true,
 name: "[name]"
 }),
 /*...*/
]
}

module.exports = {
 /*...*/

 plugins: [
 new webpack.DllReferencePlugin({
 context: __dirname,
 manifest: require(
 "@waltz-controls/waltz-shared-libs/" +
 "dist/vendor-manifest.json")}),
 new AddAssetHtmlPlugin({
 filepath: path.resolve(dirname,
 "node_modules/@waltz-controls/" +
 "waltz-shared-libs/dist/vendor.js")}),
 /*...*/
]
}

{
 /*...*/
 "devDependencies": {
 "@waltz-controls/waltz-shared-libs": "^1.0.2",
 /*...*/
 }
}

Shared-libs is based on Webpack DllPlugin technology

webpack.config.js of
@waltz-controls/waltz-shared-libs

webpack.config.js of @waltz-controls/waltz

package.json of @waltz-controls/waltz

https://webpack.js.org/plugins/dll-plugin/#usage

https://webpack.js.org/plugins/dll-plugin/#usage

Summary
- Waltz is a web version of JIVE and ASTOR

- is a multi-purpose WebApp
- is a framework to build custom Web UI’s
- Future plans is to be interconnection software platform

- Waltz can be successfully extended with a React Components
- waltz-shared-libs has been added to waltz project to provide necessary React/Redux

dependencies
- to create React Waltz plugin one must connect vendor.js file with webpack DllPlugin

mechanism

10

11

Thank You!
For your attention

