
Unit testing PyTango devices

Anton Joubert & Drew Devereux
Online / 18 November 2020

Tango Nov 2020 status update meeting

Presenters

Anton Joubert
South Africa

Drew Devereux
Australia

Acknowledgements

Additional Contributors:

 Giorgio Brajnik
 Katleho Madisa
 Paul Swart
 Samuel Twum
 Johan Venter
 Sett Wai

Overview

Software Testing in SKA

Testing with DeviceTestContext

Mocking DeviceProxy

Pytest examples

Software Testing in SKA

https://developer.skatelescope.org/en/latest/development_practices/ska_testing_policy_and_strategy.html

(Hosted on Confluence - SKA access only)

(Public site)

https://developer.skatelescope.org/en/latest/development_practices/ska_testing_policy_and_strategy.html

Types of software testing

Unit

Integration

System (BDD and acceptance)

Static API verification: YAML spec (via tango-simlib)

Contract testing: Pact (consumer driven)

https://github.com/ska-sa/tango-simlib
https://docs.pact.io

Types of software testing

Unit (testing Tango devices)

Integration

System (BDD and acceptance)

Static API verification: YAML spec (via tango-simlib)

Contract testing: Pact (consumer driven)

https://github.com/ska-sa/tango-simlib
https://docs.pact.io

Testing with DeviceTestContext

Testing with real Tango facility

Test runner

Testing with DeviceTestContext

Hybrid: DeviceTestContext + real

A B

2 x DeviceTestContext (not recommended)

A

B

Testing with MultiDeviceTestContext

A

B

[Multi]DeviceTestContext thread/process

DeviceTestContext(..., process=False)

 False: start device server in a thread (default)
 True: start device server in a subprocess

Thread: can access device internals, but can segv
Subprocess: no internals, no segv

Best of both: use thread with multiprocess test runner
 (pytest --forked)

[Multi]DeviceTestContext device internals

[Multi]DeviceTestContext device internals

Mocking DeviceProxy

Mocking DeviceProxy - test doubles

Mocking DeviceProxy

* Same approach can be used for other client access methods:
Group and AttributeProxy

Pytest examples

Using Pytest fixtures with DeviceTestContext

Only three lines are actual test
logic.

The other four are test setup /
teardown.

These:
● obscure the test, and
● are likely to be reused in

many tests.

Pytest fixtures primer

Use a fixture to separate test
setup / teardown from test logic

Fixtures can call fixtures

Fixtures can call fixtures, and override fixtures

Fixtures can call fixtures, and override fixtures

←

Mocking tango.DeviceProxy: Why?

If we mock out
tango.DeviceProxy
here…←

Then we are writing
to a mock here…

Mocking tango.DeviceProxy: a strawman

We have mocked, but
we can’t get a handle
on the mock.

Each call to
tango.DeviceProxy
will return a new
mock, even for the
same FQDN.

Mocking tango.DeviceProxy with a defaultdict

We get the same
mock each time we
call DeviceProxy with
the same FQDN.

We have handles on
all of our mocks.

Mocking tango.DeviceProxy with a defaultdict

We get the same
mock each time we
call DeviceProxy with
the same FQDN.

We have handles on
all of our mocks.

Mocking tango.DeviceProxy with a defaultdict

We get the same
mock each time we
call DeviceProxy with
the same FQDN.

We have handles on
all of our mocks.

Testing with a mocked tango.DeviceProxy

Customizing mock behaviour: the need

Antenna.SetGain can now return SUCCESS or FAILURE.

Problem: self.antenna_proxy is a mock. If you call SetGain() on a mock, it
returns another mock. So SetAntennaGain() will always return False. How
can we test it?

Solution: We need to set the expected behaviour of the mock in advance
of the test.

Customizing mock behaviour: the solution

Customizing mock behaviour: an example

MultiDeviceTestContext workaround fixture

● Fixture for
MultiDeviceTestContext

● Uses devices_info
fixture

● Workaround for
short-address
resolution issue
○ Needed in PyTango

9.3.2
○ Fix coming

Wrapping up

Future? Move logic outside Tango domain

* Diagram courtesy of
 Giorgio Brajnik

www.skatelescope.org

Thanks!

Questions?

https://pytango.readthedocs.io/en/latest/testing.html

http://www.skatelescope.org
https://pytango.readthedocs.io/en/latest/testing.html

