

“dsconfig”, a Tango
configuration tool

Johan Forsberg
Tango meeting 22-06-30

What is dsconfig?

A command line tool that reads a configuration
from a file and applies it to an existing Tango
control system.

Depends on PyTango

Defines a JSON file format

https://gitlab.com/MaxIV/lib-maxiv-dsconfig

JSON file format
"servers": {
 "some-server/instance": {
 "SomeDeviceClass": {
 "some/device/1": {
 "properties": {
 "someImportantProperty": [
 "foo",
 "bar"
],
 "otherProperty": ["7"]
 },
 "attribute_properties": {
 "anAttribute": {
 "min_value": ["-5"],
 "unit": ["mV"]
 }
 }
 “some/device/2”: { ...

How it works
1. Read and validate the JSON file

2. “Dump” the relevant parts of the Tango database

3. Compare the two configurations
 → If there is no difference, we are already done!

4. Display the “diff” to the user
 → If the “--write” flag was not added, stop here.

5. Add/remove/change in the database what is needed for
the user supplied configuration to be “true”.

What is the point?

Tango DB is a “moving target”; automated configuration
may overwrite important manual changes

Applying configuration with deployment tools like
Ansible (see Benjamin’s talk yesterday).

Developers can generate and reproduce testing setups.
Also useful for automated testing, e.g. in CI.

Convenient way to get a “snapshot” of the database for
backup or further analysis.

Example session

$ conda create -n dsconfig -c conda-forge python=3.10 dsconfig

$ conda activate

$ json2tango --help
Usage: json2tango [options] JSONFILE

Options:
 -h, --help show this help message and exit
 -w, --write write to the Tango DB
 -u, --update don't remove things, only add/update
 -c, --case-sensitive Don't ignore the case of server, device,
...

Example session

Example session

Example session

Example session

-w flag required
for writing to DB

Use case: plc2tango
At MAX IV, PLC handles vacuum interlocks, cooling flows,
temperatures, etc

Need to make this info available via Tango for data
acquisition, GUIs, archiving…

Facade devices, a "low code" solution to create devices
combining info from various parts of the control system,
configured via properties

→ Large numbers of different devices that need frequent
updates.

Fortunately: naming convention!

Use case: plc2tango
Example: A thermocouple

B316A-O01-DIA-TCO-04
B316A = System: beamline on R3, number 16, branch A
O01 = Location: optics area 1
DIA = Subsystem: diagnostics
TCO = Equipment type: thermocouple
04 = Fourth in order

PLC tags:
B316A_O01_DIA_TCO04_AS Temperature value
B316A_O01_DIA_TCO04_BP Bypassed
B316A_O01_DIA_TCO04_A01_AA__HHInAlarm High alarm
...

Tango device name: B316A-O01/DIA/TCO-04

Use case: plc2tango

{
 "servers": {
 "Thermocouple": {
 "B316A-DIA": {
 "Thermocouple": {
 "B316A-O01/DIA/TCO-04": {
 "properties": {
 "AlarmsDesc": [
 "B316A_O01_DIA_TCO04_A01_AD__InAlarm:TCO channel fault"
],
 "AlarmsList": [
 "B316A/VAC/PLC-01/B316A_O01_DIA_TCO04_A01_AD__InAlarm"
],
 "AlarmsReset": [
 "False"
],
 "ByPassedAttribute": [
 "B316A/VAC/PLC-01/B316A_O01_DIA_TCO04_BP"
],
 "HighAlarmAttribute": [
 "B316A/VAC/PLC-01/B316A_O01_DIA_TCO04_A01_AA__HHInAlarm"
],
 "HighAlarmLevelAttribute": [
 "B316A/VAC/PLC-01/B316A_O01_DIA_TCO04_A01_AA__HHLimit"
],
 "HighWarningAttribute": [
 "B316A/VAC/PLC-01/B316A_O01_DIA_TCO04_A01_AA__HInAlarm"
], ...

Tag list (CSV file) is
parsed according to
the naming
convention and
turned into a dsconfig
file ->

Use case: plc2tango

Simple web service allows
PLC engineers to upload
and apply new tag lists
without specific knowledge
about Tango

Runs dsconfig in the
background

Use case: Ansible
“declarative”: describe the config you want, and let the
tool figure out how to get there.

“Idempotent”: do only what is needed to get to the
desired state.

→ good fit for Ansible!

Our Ansible role for deploying Tango devices uses
dsconfig as a python module.

(For more information about how we use Ansible at MAX
IV, see Benjamin’s talk yesterday.)

How to get it

Code:
https://gitlab.com/MaxIV/lib-maxiv-dsconfig

PyPI:
$ pip install dsconfig

Conda:
“dsconfig” on conda-forge

RPM:
https://gitlab.com/tango-controls/RPM/dsconfig-spec

Thanks!

