
Developing a Tango device in a k8s context
Matteo Di Carlo INAF – Osservatorio Astronomico d’Abruzzo

Tango Controls Workshop @ ICALEPCS 2023 South Africa

SKA Deployment Practices

• Kubernetes (k8s) for container orchestration (kubernetes.io)

• Helm for packaging and deploying SKA Software (helm.sh)

• A chart is a recipe to deploy the several k8s resources (i.e.,
containers, storage, networking components, etc) required for an
application to run

• Works on templates, allows to adapt generic configurations to
different environments (i.e., the different SKA datacentres)

• Heavy use of Makefile (i.e., building, testing, deployment, …)

• Gitlab for CI/CD

https://kubernetes.io/
https://helm.sh/

There are a number of competing Kubernetes
development environments - eg:

• Minikube - https://kubernetes.io/docs/tasks/tools/install-minikube/

• Kind - https://kind.sigs.k8s.io/docs/user/quick-start/

• Microk8s - https://microk8s.io/

Minikube still remains the most comprehensive option
for a personal Kubernetes development environment

• It is based on kubeadm, the core Kubernetes cluster deployment tool, and
tracks around 1-3 months behind k8s cluster point releases

Development environments for Kubernetes

https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kind.sigs.k8s.io/docs/user/quick-start/
https://microk8s.io/

4

Install Minikube

•Install docker-engine

•https://docs.docker.com/engine/install/ubuntu/

•Deploy a Minikube development environment using
make

•https://gitlab.com/ska-telescope/sdi/ska-cicd-deploy-
minikube

•This repo is intended for ubuntu OS but works OK also in
a WSL2 system

https://docs.docker.com/engine/install/ubuntu/
https://gitlab.com/ska-telescope/sdi/ska-cicd-deploy-minikube
https://gitlab.com/ska-telescope/sdi/ska-cicd-deploy-minikube

5

Detailed steps – install docker ubuntu

$ sudo apt-get update

$ sudo apt-get install -y ca-certificates curl gnupg make

$ sudo install -m 0755 -d /etc/apt/keyrings

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o

/etc/apt/keyrings/docker.gpg

$ sudo chmod a+r /etc/apt/keyrings/docker.gpg

$ echo \

 "deb [arch="$(dpkg --print-architecture)" signed-

by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu \

 "$(. /etc/os-release && echo "$VERSION_CODENAME")" stable" | \

 sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

$ sudo apt-get update

$ sudo apt-get install -y docker-ce docker-ce-cli containerd.io docker-buildx-

plugin docker-compose-plugin

$ sudo groupadd docker

$ sudo usermod -aG docker $USER

$ newgrp docker

$ sudo service docker start

$ docker run hello-world

6

Detailed steps – install minikube

$ git clone https://gitlab.com/ska-telescope/sdi/ska-cicd-deploy-minikube/

$ cd ska-cicd-deploy-minikube/

$ git submodule update --init --recursive

$ echo "MEM=6144" >> PrivateRules.mak

$ echo "DRIVER=docker" >> PrivateRules.mak

$ make all

Minikube Installed: Yes!

Helm Installed: Yes!

DRIVER: docker

RUNTIME: docker

ADDONS: --addons=logviewer --addons=metrics-server --addons=ingress

CPUS: 4

MEM: 6144

OS_NAME: linux

OS_ARCH: x86_64

OS_BIN: amd64

EXE_DIR: /usr/local/bin

SUDO_FOR_EXE_DIR: sudo --preserve-env=http_proxy --preserve-env=https_proxy

IPADDR: 172.19.24.208

MINIKUBE_IP: 192.168.49.2

HOSTNAME: MattZenBook1.

FQDN: MattZenBook1..local.net

MOUNT_FROM: /srv

MOUNT_TO: /srv

PROXY_VERSION: 2.8

PROXY_CONFIG: /home/ubuntu/.minikube/minikube-nginx-haproxy.cfg

MINIKUBE_VERSION: v1.30.1

KUBERNETES_VERSION: v1.27.3

KUBERNETES_SERVER_VERSION: v1.27.3

HELM_VERSION: v3.12.1

HELMFILE_VERSION: 0.155.0

YQ_VERSION: 4.34.1

INGRESS: http://192.168.49.2

USE_CACHE:

CACHE_DATA: /home/ubuntu/.minikube/registry_cache

Minikube status:

minikube

type: Control Plane

host: Running

kubelet: Running

apiserver: Running

kubeconfig: Configured

7

Detailed steps – WSL2

Make sure system is configured and resolv.conf not automatically generated

$ cat /etc/wsl.conf

[boot]

systemd=true

[network]

generateResolvConf = false

setup name server

sudo -s

apt update -y

systemctl disable --now systemd-resolved

rm -rf /etc/resolv.conf

echo "nameserver 8.8.8.8" > /etc/resolv.conf

apt install dnsmasq dnsutils ldnsutils -y

echo "server=8.8.8.8" >> /etc/dnsmasq.conf

echo "server=1.1.1.1" >> /etc/dnsmasq.conf

echo "server=1.0.0.1" >> /etc/dnsmasq.conf

echo "server=/svc.cluster.local/$(kubectl get svc --namespace extdns extdns-coredns -o

jsonpath='{.status.loadBalancer.ingress[0].ip}') # minikube" >> /etc/dnsmasq.conf

rm -rf /etc/resolv.conf

ln -s /run/resolvconf/resolv.conf /etc/resolv.conf

systemctl restart dnsmasq

8

What exactly did we install?

•Minikube
https://github.com/kubernetes/minikube/releases
• logviewer - simple logview available on port 32000 - browse with `sensible-browser
http://$(minikube ip):32000`

• metrics-server - simple metrics server

• ingress - NGINX based Ingress Controller for exposing HTTP/HTTPS services

• metallb - enable creation of `LoadBlancer` type `Service` resources to expose application
ports out of Kubernetes. This is deployed in conjunction with a DNS responder (`extdns`)
that can be integrated with the local users DNS settings to have automatic name resolution
for these services.

•Helm https://github.com/helm/helm/releases

•Haproxy https://registry.hub.docker.com/_/haproxy

•K8s tools https://kubernetes.io/releases/

9

k9s

Talk
TH2AO06 SKA Tango Operator
Thursday - 12 October 2023

10

ska-tango-examples repository

• Demonstrates how to structure a project that provides some
simple Tango devices coded in PyTango in k8s.

• Use k8s for development and testing so that the build
environment, test environment and test results are all
completely reproducible and are independent of host
environment.

• List of TANGO examples that demonstrate some features of
the framework as starting point for SKA developers in learning
it

• We also use it for testing new version of the framework

•One of the most complete example is the tabata

•It is a realization of a gym workout

• more information at https://en.wikipedia.org/wiki/High-
intensity_interval_training.

• https://www.tabatatimer.com/

The Tabata device

12

The Tabata device

13

The Tabata device

Device

KEY

TANGO commands

attributes read/write

ZeroMQ events

Tabata

prepareCounter

tabataCounter

cyclesCounter

restCounter

workCounter

14

The counter device

• This Device demonstrate the use of the TANGO event mechanism to
send change events to clients.

• There's also a device attribute in polling so that events for that
attribute are sent automatically.

• Commands:

• Increment

• Decrement

• CounterReset

• Attributes:

• value (only read)

• polled_value (only read)

• fire_event_at (read/write)

15

The Tabata device: attributes

•Running_state (PREPARE, WORK, REST)

•State (ON, OFF)

• tabatas: for counter initialization

•cycles: for counter initialization

•rest: for counter initialization

•work: for counter initialization

•prepare: for counter initialization

16

The Tabata device: properties

•prepCounter: device name for the prepare counter

•workCounter: device name for the work counter

•restCounter: device name for the rest counter

•cyclesCounter: device name for the cycles counter

• tabatasCounter: device name for the tabatas counter

•sleep_time: to speed the execution during tests

17

The Tabata Device: commands

•Start: start a python thread for interacting with the
counters

•Stop: stop the python thread for interacting with the
counters

•ResetCounters: reset the counters to the related
attributes

18

19

The AsyncTabata Device

•Same as Tabata but the realization is asynchonous.

•The tabata device has 2 commands: Run and Stop.

•The run executes the entire job so it's not possible to
use it without an async command.

20

Notes on serialization model

• It is not common to change the default behaviour, usually commands
are always very quick and, in case a long job must be run, a thread
can be used for the execution with the necessary lock mechanism.

• Anyway, while the Tabata device uses the default serialization model,
the AsyncTabata changes the default to no synchronization.

• https://pytango.readthedocs.io/en/stable/green_modes/green_modes
_server.html

• https://tango-
controls.readthedocs.io/en/latest/development/advanced/threading.ht
ml#serialization-model-within-a-device-server

21

The AsyncTabata Device sequence diagram

22

ska-tango-examples structure

• Folders:

• src: source code, i.e. src/ska_tango_examples/tabata/Tabata.py

• tests: test code, i.e. tests/integration/test_tabata.py

• charts: helm charts for installing into k8s

• docs: documentation

• .make: ska makefile submodule for automation

• In the root folder:

• Dockerfile

• pyproject.toml

23

Poetry - pyproject.toml

•Poetry is a tool for dependency management and
packaging in Python. It allows you to declare the
libraries your project depends on and it will manage
(install/update) them for you. Poetry offers a lockfile to
ensure repeatable installs, and can build your project
for distribution.

24

Poetry - pyproject.toml

•Poetry is a tool for dependency management and
packaging in Python. It allows you to declare the
libraries your project depends on and it will manage
(install/update) them for you. Poetry offers a lockfile to
ensure repeatable installs, and can build your project
for distribution.

[tool.poetry]

name = "ska-tango-examples"

version = "0.4.28"

description = "SKA Tango Examples“

[…]

[tool.poetry.dependencies]

python = "^3.9"

pytango = "^9.4.2"

ska-tango-base = "^0.12.0"

ska-ser-log-transactions = "*"

numpy = "1.23.0"

debugpy = "^1.5.1"

25

OCI image - Dockerfile

ARG BUILD_IMAGE="artefact.skao.int/ska-tango-images-pytango-builder:9.4.3"

ARG BASE_IMAGE="artefact.skao.int/ska-tango-images-pytango-runtime:9.4.3"

FROM $BUILD_IMAGE AS buildenv

FROM $BASE_IMAGE

USER root

WORKDIR /app

COPY --chown=tango:tango pyproject.toml poetry.lock ./

RUN poetry export --format requirements.txt --output poetry-requirements.txt --

without-hashes && \

 sed -i '/pytango/d' poetry-requirements.txt && \

 sed -i '/numpy/d' poetry-requirements.txt && \

 pip install -r poetry-requirements.txt && \

 rm poetry-requirements.txt

COPY --chown=tango:tango src ./

USER tango

26

Testing

•Encapsulated in the Makefile

•It uses pytest with no bdd

•It uses pytest fixture and a factory pattern for creating
the right device context

•Unit (no install required) testing with

•$ make python-test

•Integration (install required) testing with

•$ make k8s-test

27

DevFactory class

•It is a factory class which provide the ability to create
an object of type DeviceProxy.

•When testing the static variable _test_context is an
instance of the TANGO class MultiDeviceTestContext
(done with pytest fixture).

•More information on tango testing can be found at the
following link:
https://pytango.readthedocs.io/en/stable/testing.html

28

conftest.py

@pytest.fixture

def tango_context(devices_to_load, request):

 true_context = request.config.getoption("--true-context")

 logging.info("true context: %s", true_context)

 if not true_context:

 with MultiDeviceTestContext(devices_to_load, process=False) as context:

 DevFactory._test_context = context

 yield context

 else:

 yield None

Dictionary fixture present in

the test files

29

Install the ska-tango-examples

•Kubernetes (k8s) for container orchestration
(kubernetes.io)

•Kubernetes Service == TANGO Device Server

•Helm for packaging SKA k8s applications (helm.sh)

•Each SKA element provides an helm chart for running it
in k8s

•Helm has the concept of dependency: a chart can have
one or more sub-charts

30

ska-tango-examples dependencies

dependencies:

- name: ska-tango-util

 version: 0.4.7

 repository: https://artefact.skao.int/repository/helm-internal

- name: ska-tango-base

 version: 0.4.7

 repository: https://artefact.skao.int/repository/helm-internal

 condition: ska-tango-base.enabled,global.sub-system.ska-tango-base.enabled

Application chart which defines the basic TANGO ecosystem in kubernetes.

tangodb: mysql database used to store configuration data used at startup of a

device server

databaseds: device server providing configuration information to all other

components of the system as well as a runtime catalog of the components/devices

itango: it is an interactive Tango client

tangotest: it is the tango test device server

The ska-tango-util helm chart is a library chart

which helps other application chart defines

TANGO device servers.

31

Declare the Device Servers

Name is the k8s name of the resources

The list of dependencies: devices or simple host

and port

Command or entry points of the device servers

(if more than one entry point is specified, we

are referring to a multi-devices DS)

The server definition, it can indicates the list of

instances, devices, classes, etc.

The container image to use

How to check when the DS is ready or in

failure

Partial set of

parameters to

set!

32

ska-tango-examples dev workflow

$ git clone https://gitlab.com/ska-telescope/ska-tango-examples.git

$ cd ska-tango-examples

$ git submodule update --init --recursive

$ eval $(minikube docker-env)

$ curl -sSL https://install.python-poetry.org | python3 -

$ poetry install; poetry shell

$ make python-test

$ make oci-build

$ make k8s-install-chart

$ make k8s-watch; make k8s-wait

$ make k8s-test

$ make k8s-uninstall-chart

33

Common tools available

•Jive

•Pogo

•Logviewer

•…

34

Debugging - debugpy library

•It is an adapter of the pydevd used in PyCharm:
https://github.com/microsoft/debugpy

•How it works:

•CLI: python3 -m debugpy --listen localhost:5678
mydevice.py

•From code:

• import debugpy

• debugpy.listen(5678)

35

debug_this_thread

•A TANGO Device server does not use the python
threads so they are not debuggable unless we make
them aware of the debugger.

•https://github.com/microsoft/debugpy/wiki/API-
Reference#debug_this_thread

•Makes the debugger aware of the current thread, and
start tracing it. Must be called on any background
thread that is started by means other than the usual
Python APIs (i.e. the threading module), in order for
breakpoints to work on that thread.

www.skao.int

We recognise and acknowledge the

Indigenous peoples and cultures that have

traditionally lived on the lands on which

our facilities are located.

http://www.skao.int

	Diapositiva 1: Developing a Tango device in a k8s context
	Diapositiva 2: SKA Deployment Practices
	Diapositiva 3: Development environments for Kubernetes
	Diapositiva 4: Install Minikube
	Diapositiva 5: Detailed steps – install docker ubuntu
	Diapositiva 6: Detailed steps – install minikube
	Diapositiva 7: Detailed steps – WSL2
	Diapositiva 8: What exactly did we install?
	Diapositiva 9: k9s
	Diapositiva 10: ska-tango-examples repository
	Diapositiva 11: The Tabata device
	Diapositiva 12: The Tabata device
	Diapositiva 13: The Tabata device
	Diapositiva 14: The counter device
	Diapositiva 15: The Tabata device: attributes
	Diapositiva 16: The Tabata device: properties
	Diapositiva 17: The Tabata Device: commands
	Diapositiva 18
	Diapositiva 19: The AsyncTabata Device
	Diapositiva 20: Notes on serialization model
	Diapositiva 21: The AsyncTabata Device sequence diagram
	Diapositiva 22: ska-tango-examples structure
	Diapositiva 23: Poetry - pyproject.toml
	Diapositiva 24: Poetry - pyproject.toml
	Diapositiva 25: OCI image - Dockerfile
	Diapositiva 26: Testing
	Diapositiva 27: DevFactory class
	Diapositiva 28: conftest.py
	Diapositiva 29: Install the ska-tango-examples
	Diapositiva 30: ska-tango-examples dependencies
	Diapositiva 31: Declare the Device Servers
	Diapositiva 32: ska-tango-examples dev workflow
	Diapositiva 33: Common tools available
	Diapositiva 34: Debugging - debugpy library
	Diapositiva 35: debug_this_thread
	Diapositiva 36

