
Sergi Rubio Manrique - ALBA Synchrotron

Managing Tango Device
Servers

Tango Workshop at ICALEPCS'23

Cape Town - South Africa

Sergi Rubio Manrique - ALBA Synchrotron

Setup of a Tango Development Environment
SKA Docker Images:

https://gitlab.com/ska-telescope/ska-tango-images

Those images are documented in the existing Tango Development Environment for SKA:

 https://developer.skatelescope.org/en/latest/tools/tango-devenv-setup.html

Tango Box OVA Image:

A preinstalled linux virtual machine with all Tango Services instantiated:

https://tango-controls.readthedocs.io/en/latest/installation/vm/tangobox-9.2.html

conda-forge

micromamba install -c conda-forge cpptango jive tango-astor pogo
tango-starter tango-test pytango taurus

https://beenje.github.io/blog/posts/developing-and-compiling-tango-with-conda/
https://pytango.readthedocs.io/en/latest/start.html

Sergi Rubio Manrique - ALBA Synchrotron

Tango Control System Overview

Sergi Rubio Manrique - ALBA Synchrotron

Tango Control System Overview

Everything in Tango is either a Client or a
Device (including the database)

Database: Keeps servers, devices, properties,
attributes configuration and host status

Device Servers: Each server is a process, in
which several devices run instantiating Tango
Device Classes plus an special Admin Device.

Device: Each instance of a Tango Device Class
running within a device server.

Clients: locate devices thanks to the database,
then instantiates proxies

Sergi Rubio Manrique - ALBA Synchrotron

Tango Devices mirror hardware devices

Serial
Line

DUAL
Controller

Ion
Pump

Ion
Pump

Ion
Pump

port0

port5

…

5+ Tango devices

1 VacuumController instance

Network
Splitter
Box

x2

…
…

Sergi Rubio Manrique - ALBA Synchrotron

Browsing the database with Jive

Jive allows to browse all
existing devices (active or not)
classified by its Server
(process) name, Device name
or Class name.

Sergi Rubio Manrique - ALBA Synchrotron

Browsing the database with Jive

Jive displays all the required
information regarding a
device server.

This includes the host where
it is running, and the
configuration of all its
attributes.

It provides all the functionality
to create and configure
devices.

Sergi Rubio Manrique - ALBA Synchrotron

Browsing the database with Jive

Properties allow to store
custom configuration
values for our devices.

Properties can exist at
System, Device or Class
levels.

Sergi Rubio Manrique - ALBA Synchrotron

An "empty" control system
already contains multiple
devices, used by different
Tango Services (database,
archiving, alarms, ...)

The "Starter" device controls
all servers running in a host.

Each server has an special
"admin" device controlling its
devices.

Sergi Rubio Manrique - ALBA Synchrotron

Browsing Attributes

For running devices, Jive allows
to configure the attribute format
and label (to be displayed by
clients), the alarm levels, the
event filters and the internal
refresh polling amongst many
other configuration parameters.

All these parameters can be set
by code, but Jive allows to tune
them to our specific needs.

Sergi Rubio Manrique - ALBA Synchrotron

Scripting: PyTango

In [1]: import PyTango
In [2]: db = PyTango.Database()
In [3]: db.get_device_property('tango/admin/pt143' ,'StartDSPath')
Out[3]: {'StartDSPath': ['/usr/bin', '/usr/local/bin', '/usr/lib/tango']}

In [4]: dp = PyTango.DeviceProxy('tango/admin/pt143')
In [5]: dp.info()
Out[5]: DeviceInfo(dev_class = 'Starter', dev_type = 'Uninitialised', doc_url = 'Doc
arter/pt143', server_version = 5)

In [6]: dp.get_attribute_list()
Out[6]: ['HostState', 'RunningServers', 'StoppedServers', 'Servers', 'State', 'Status

In [7]: dp.HostState
Out[7]: 0

In [8]: dp.RunningServers
Out[8]: ('hdb++cm-srv/1', 'hdb++es-srv/1', 'TangoTest/1')

Sergi Rubio Manrique - ALBA Synchrotron

brief demo ...

Sergi Rubio Manrique - ALBA Synchrotron

Managing servers and hosts: Astor

Astor application provides full control
on all servers and devices running on
a controls host.

It allows to start/stop devices, assign
runlevels and execute testing and
diagnostic tools.

Sergi Rubio Manrique - ALBA Synchrotron

Scripting: fandango
fandango provides Astor python API, providing the same functionality than astor tool.

pip3 install fandango

fandango can be used from python shell:

import fandango as fn

fn.tango.add_new_device('DynamicDS/1','DynamicDS','test/dyn/1')
astor = fn.Astor()
host = fn.linos.MyMachine().hostname
astor.start_servers('DynamicDS/1',host=host)
astor.set_server_level('DynamicDS/1',level=3,host=host)

methods from fandango can also be launched linux shell:

$: fandango add_new_device DynamicDS/1 DynamicDS test/dyn/1

$: fandango put_device_property test/dyn/1 DynamicAttributes "T=t%10"

$: tango_servers $HOSTNAME start DynamicDS/1

Sergi Rubio Manrique - ALBA Synchrotron

Events in Tango: polling vs. push

Event communication between devices and clients can be setup in 3 ways:

 - programmatically: using push_*_event() methods in your code

 - from pogo: enforcing the default event configuration, independent from
implementation

 - on runtime: using Jive or the Tango API to configure periodic polling and event
filters in your device, that will trigger event on change

These 3 options are available for all attribute config
parameters (e.g. qualities, alarm ranges)

Sergi Rubio Manrique - ALBA Synchrotron

Events in Tango: push on polling

When using the default polling mechanism, values
will be read periodically and compared against the
event config.

Sergi Rubio Manrique - ALBA Synchrotron

Scripting: dsconfig

https://gitlab.com/MaxIV/lib-maxiv-dsconfig

This is a command line tool for managing configuration of Tango device servers. It runs on
python 2.7 as well as 3.6 and up.

The goal of this project is to provide tools for configuring a Tango database in a convenient way.
Right now the focus is on supporting Excel files as input ("xls2json"), but support for other
formats should follow.

The main idea is that the input files are parsed and turned into an intermediate JSON format,
specified by a schema. This file can then be given to the "json2tango" tool which then tries to
make the database contents match, by adding, modifying or removing servers, devices and
properties.

Sergi Rubio Manrique - ALBA Synchrotron

Run a device server without Database

Tango Control System can run devices without a database ... but still being able to use all Jive functionality
to configure devices.

Device configuration can be exported from Jive once configured ... and then imported somewhere else
(e.g. your Raspberry Py) from a device server on runtime.

myserver myinstance_name -file=/tmp/MyServerFile -ORBendPoint giop:tcp::<port number>

More info:

https://tango-controls.readthedocs.io/en/latest/administration/deployment/without-sql-db.html#example-of-
device-server-started-without-database-usage

https://tango-controls.readthedocs.io/en/latest/administration/deployment/starting.html#without-database

Sergi Rubio Manrique - ALBA Synchrotron

Other tools

The Tango ecosystem is huge, multiple archiving backends, multiple ways to
configure the database, multiple gateway devices and façades, python and
c++ alarm systems.

Most of services are based on devices, configured with properties and can
be easily configured using dsconfig or fandango.

Community projects are hosted at:

https://gitlab.com/tango-controls/

And there's a huge catalogue of existing software/hardware Tango Classes:

https://www.tango-controls.org/developers/dsc/

Sergi Rubio Manrique - ALBA Synchrotron

Tango Ecosystem

Sergi Rubio Manrique - ALBA Synchrotron

Conclusions / Questions

https://tango-controls.readthedocs.io/en/latest/installation/vm/tangobox-9.2.html

● https://tango-controls.org
● https://www.tango-controls.org/community/forum/
● https://tango-controls.readthedocs.io/
● https://pytango.readthedocs.io/
● https://gitlab.com/tango-controls
● https://gitlab.com/tango-controls/fandango
● https://gitlab.com/MaxIV/lib-maxiv-dsconfig

